Advertisements
Advertisements
प्रश्न
ΔABC~ΔDEF such that ar(ΔABC) = 64 cm2 and ar(ΔDEF) = `169cm^2`. If BC = 4cm, find EF.
उत्तर
We have Δ ABC ~ Δ DEF
If two triangles are similar then the ratio of their areas is equal to the ratio of the squares of their corresponding sides.
∴ `(area(ΔABC))/(area(ΔDEF))=((BC)/(EF))^2`
⇒ `64/169=((BC)/(EF))^2`
⇒` (8/13)^2=(4/(EF))^2`
⇒ `8/13=4/(EF)`
⇒ EF = 6.5 cm
APPEARS IN
संबंधित प्रश्न
Construct a triangle ABC with sides BC = 7 cm, ∠B = 45° and ∠A = 105°. Then construct a triangle whose sides are `3/4` times the corresponding sides of ∆ABC.
The sides of triangle is given below. Determine it is right triangle or not.
a = 8 cm, b = 10 cm and c = 6 cm
A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?
Calculate the height of an equilateral triangle each of whose sides measures 12 cm.
In ∆ABC, ∠A is obtuse, PB ⊥ AC and QC ⊥ AB. Prove that:
(i) AB ✕ AQ = AC ✕ AP
(ii) BC2 = (AC ✕ CP + AB ✕ BQ)
If D, E, F are the respectively the midpoints of sides BC, CA and AB of ΔABC. Find the ratio of the areas of ΔDEF and ΔABC.
In an equilateral triangle with side a, prove that area = `sqrt3/4` 𝑎2
Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm ?
Find the altitude of an equilateral triangle of side 8 cm.
In a ΔABC, ∠CAB is an obtuse angle. P is the circumcentre of ∆ABC. Prove that ∠CAB – ∠PBC = 90°.