рдорд░рд╛рдареА

In an Equilateral Triangle with Side A, Prove that Area = `Sqrt3/4` ЁЭСО2 - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

In an equilateral triangle with side a, prove that area = `sqrt3/4` ЁЭСО2 

 

рдЙрддреНрддрд░

 

We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having AB =BC = CA = a.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, It will bisects the side BC  

∴` DC=1/2 a ` 

Now, In right triangle ADC
By using Pythagoras theorem, we have 

`AC^2=CD^2+DA^2` 

⇒` a^2-(1/2 a)^2+DA^2` 

⇒ `DA^2=a^2-1/4 a^2` 

⇒` DA^2=3/4 a^2` 

⇒`DA=sqrt3/2 a` 

ЁЭСБЁЭСЬЁЭСд,ЁЭСОЁЭСЯЁЭСТЁЭСО (ΔЁЭР┤ЁЭР╡ЁЭР╢)=`1/2xxBCxxAD` 

=` 1/2xxaxxsqrt3/2 a` 

=`sqrt3/4 a^2`

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 4: Triangles - Exercises 5

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×