рд╣рд┐рдВрджреА

In an Equilateral Triangle with Side A, Prove that Area = `Sqrt3/4` ЁЭСО2 - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

In an equilateral triangle with side a, prove that area = `sqrt3/4` ЁЭСО2 

 

рдЙрддреНрддрд░

 

We know that the altitude of an equilateral triangle bisects the side on which it stands and forms right angled triangles with the remaining sides.
Suppose ABC is an equilateral triangle having AB =BC = CA = a.
Suppose AD is the altitude drawn from the vertex A to the side BC.
So, It will bisects the side BC  

∴` DC=1/2 a ` 

Now, In right triangle ADC
By using Pythagoras theorem, we have 

`AC^2=CD^2+DA^2` 

⇒` a^2-(1/2 a)^2+DA^2` 

⇒ `DA^2=a^2-1/4 a^2` 

⇒` DA^2=3/4 a^2` 

⇒`DA=sqrt3/2 a` 

ЁЭСБЁЭСЬЁЭСд,ЁЭСОЁЭСЯЁЭСТЁЭСО (ΔЁЭР┤ЁЭР╡ЁЭР╢)=`1/2xxBCxxAD` 

=` 1/2xxaxxsqrt3/2 a` 

=`sqrt3/4 a^2`

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 4: Triangles - Exercises 5

APPEARS IN

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [2]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×