हिंदी

From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = 52 , then what is the height of ∆ABC? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = `5sqrt(2)` , then what is the height of ∆ABC?

योग

उत्तर

AB = BC     ......[Given]

∴ ∠A = ∠C     ......[Isosceles triangle theorem]

Let ∠A = ∠C = x     ......(i)

In ∆ABC, ∠A + ∠B + ∠C = 180°   ......[Sum of the measures of the angles of a triangle is 180°]

∴ x + 90° + x = 180°     .......[From (i)]

∴ 2x = 90°

∴ x = `90^circ/2`    .......[From (i)]

∴ x = 45°

∴ ∠A = ∠C = 45°

∴ ∆ABC is a 45° – 45° – 90° triangle.

∴ AB = BC = `1/sqrt(2) xx "AC"`    ......[Side opposite to 45°]

= `1/sqrt(2) xx 5sqrt(2)`

∴ AB = BC = 5 units

∴ The height of ∆ABC is 5 units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Pythagoras Theorem - Q.1 (B)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The sides of triangle is given below. Determine it is right triangle or not.

a = 1.6 cm, b = 3.8 cm and c = 4 cm


The sides of triangle is given below. Determine it is right triangle or not.

a = 8 cm, b = 10 cm and c = 6 cm


A ladder 17 m long reaches a window of a building 15 m above the ground. Find the distance of the foot of the ladder from the building.


Using Pythagoras theorem determine the length of AD in terms of b and c shown in Figure.


ABCD is a square. F is the mid-point of AB. BE is one third of BC. If the area of ΔFBE = 108 cm2, find the length of AC.


In Figure, D is the mid-point of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED
= x, AD = p and AE = h, prove that:

(i) `b^2 = p^2 + ax + a^2/4`

(ii) `c^2 = p^2 - ax + a^2/4`

(iii) `b^2 + c^2 = 2p^2 + a^2/2`


In ∆ABC, ∠A is obtuse, PB ⊥ AC and QC ⊥ AB. Prove that:

(i) AB ✕ AQ = AC ✕ AP

(ii) BC2 = (AC ✕ CP + AB ✕ BQ)


∆ABD is a right triangle right-angled at A and AC ⊥ BD. Show that

(i) AB2 = BC x BD

(ii) AC2 = BC x DC

(iii) AD2 = BD x CD

(iv) `"AB"^2/"AC"^2="BD"/"DC"`


Determine whether the triangle having sides (a − 1) cm, 2`sqrta` cm and (a + 1) cm is a right-angled
triangle.


State Pythagoras theorem 


Find the length of the altitude of an equilateral triangle of side 2a cm. 


In an equilateral triangle with side a, prove that area = `sqrt3/4` 𝑎2 

 


The co-ordinates of the points A, B and C are (6, 3), (−3, 5) and (4, −2) respectively. P(xy) is any point in the plane. Show that \[\frac{ar\left( ∆ PBC \right)}{ar\left( ∆ ABC \right)} = \left| \frac{x + y - 2}{7} \right|\]

 


Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm ?


From given figure, In ∆ABC, AB ⊥ BC, AB = BC then m∠A = ?


From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = `2sqrt(2)` then l (AB) = ?


A girl walks 200m towards East and then 150m towards North. The distance of the girl from the starting point is ______.


Find the altitude of an equilateral triangle of side 8 cm.


In a ΔABC, ∠CAB is an obtuse angle. P is the circumcentre of ∆ABC. Prove that ∠CAB – ∠PBC = 90°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×