मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

An Inductor-coil of Inductance 17 Mh is Constructed from a Copper Wire of Length 100 M and Cross-sectional Area 1 Mm2. - Physics

Advertisements
Advertisements

प्रश्न

An inductor-coil of inductance 17 mH is constructed from a copper wire of length 100 m and cross-sectional area 1 mm2. Calculate the time constant of the circuit if this inductor is joined across an ideal battery. The resistivity of copper = 1.7 × 10−8 Ω-m.

बेरीज

उत्तर

Given:-

Inductance, L = 17 mH

Length of the wire, l = 100 m

Cross-sectional area of the wire, A = 1 mm2 = 1 × 10−6 m2

Resistivity of copper, ρ = 1.7 × 10−8 Ω-m

Now,

\[R = \frac{\rho l}{A}\]

\[ = \frac{1 . 7 \times {10}^{- 8} \times 100}{1 \times {10}^{- 6}} = 1 . 7 \Omega\]

The time constant of the L-R circuit is given by

\[\tau = \frac{L}{R} = \frac{17 \times {10}^{- 3}}{1 . 7}\]

\[=  {10}^{- 2}   s = 10  ms\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Electromagnetic Induction - Exercises [पृष्ठ ३१२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 16 Electromagnetic Induction
Exercises | Q 80 | पृष्ठ ३१२

संबंधित प्रश्‍न

In a series LCR circuit connected to an a.c. source of voltage v = vmsinωt, use phasor diagram to derive an expression for the current in the circuit. Hence, obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum


In a series LCR circuit, VL = VC ≠ VR. What is the value of power factor?


A source of ac voltage v = v0 sin ωt, is connected across a pure inductor of inductance L. Derive the expressions for the instantaneous current in the circuit. Show that average power dissipated in the circuit is zero.


In a series LCR circuit, obtain the condition under which the impedance of the circuit is minimum ?


An LR circuit contains an inductor of 500 mH, a resistor of 25.0 Ω and an emf of 5.00 V in series. Find the potential difference across the resistor at t = (a) 20.0 ms, (b) 100 ms and (c) 1.00 s.


An LR circuit having a time constant of 50 ms is connected with an ideal battery of emf ε. find the time elapsed before (a) the current reaches half its maximum value, (b) the power dissipated in heat reaches half its maximum value and (c) the magnetic field energy stored in the circuit reaches half its maximum value.


An LR circuit with emf ε is connected at t = 0. (a) Find the charge Q which flows through the battery during 0 to t. (b) Calculate the work done by the battery during this period. (c) Find the heat developed during this period. (d) Find the magnetic field energy stored in the circuit at time t. (e) Verify that the results in the three parts above are consistent with energy conservation.


Answer the following question.
Draw the diagram of a device that is used to decrease high ac voltage into a low ac voltage and state its working principle. Write four sources of energy loss in this device.  


Choose the correct answer from given options
The selectivity of a series LCR a.c. circuit is large, when


Obtain the resonant frequency and Q-factor of a series LCR circuit with L = 3.0 H, C = 27 µF, and R = 7.4 Ω. It is desired to improve the sharpness of the resonance of the circuit by reducing its ‘full width at half maximum’ by a factor of 2. Suggest a suitable way.


In series combination of R, L and C with an A.C. source at resonance, if R = 20 ohm, then impedence Z of the combination is ______.


In an LCR series a.c. circuit, the voltage across each of the components, L, C and R is 50V. The voltage across the LC combination will be ______.


A series LCR circuit containing a 5.0 H inductor, 80 µF capacitors, and 40 Ω resistor is connected to a 230 V variable frequency ac source. The angular frequencies of the source at which power is transferred to the circuit are half the power at the resonant angular frequency are likely to be ______.


Which of the following combinations should be selected for better tuning of an LCR circuit used for communication?


As the frequency of an ac circuit increases, the current first increases and then decreases. What combination of circuit elements is most likely to comprise the circuit?

  1. Inductor and capacitor.
  2. Resistor and inductor.
  3. Resistor and capacitor.
  4. Resistor, inductor and capacitor.

For an LCR circuit driven at frequency ω, the equation reads

`L (di)/(dt) + Ri + q/C = v_i = v_m` sin ωt

  1. Multiply the equation by i and simplify where possible.
  2. Interpret each term physically.
  3. Cast the equation in the form of a conservation of energy statement.
  4. Integrate the equation over one cycle to find that the phase difference between v and i must be acute.

A series LCR circuit driven by 300 V at a frequency of 50 Hz contains a resistance R = 3 kΩ, an inductor of inductive reactance XL = 250 πΩ, and an unknown capacitor. The value of capacitance to maximize the average power should be ______.


Three students, X, Y and Z performed an experiment for studying the variation of a.c. with frequency in a series LCR circuit and obtained the graphs as shown below. They all used

  • an AC source of the same emf and
  • inductance of the same value.

  1. Who used minimum resistance?
  2. In which case will the quality Q factor be maximum?
  3. What did the students conclude about the nature of impedance at resonant frequency (f0)?
  4. An ideal capacitor is connected across 220V, 50Hz, and 220V, 100Hz supplies. Find the ratio of current flowing through it in the two cases.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×