Advertisements
Advertisements
प्रश्न
An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see the given figure), each piece measuring 20 cm, 50 cm and 50 cm. How much cloth of each colour is required for the umbrella?
उत्तर
For each triangular piece,
Semi-perimeter,
`s=(20+50+50)/2=60 cm`
By Heron’s formula,
`"Area of triangle "=sqrt(s(s-a)(s-b)(s-c))`
`"Area of each triangle piece "=[sqrt(60(60-50)(60-50)(60-20))]cm^2`
`=[sqrt(60(10)(10)(40))]cm^2`
`=200sqrt6cm^2`
Since there are 5 triangular pieces made of two different coloured cloths,
`"Area of each cloth required "=(5xx200sqrt6)cm^2=1000sqrt6cm^2`
APPEARS IN
संबंधित प्रश्न
A triangle and a parallelogram have the same base and the same area. If the sides of triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.
A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?
A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.
A park, in the shape of a quadrilateral ABCD, has ∠C = 900, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m How much area does it occupy?
Find the perimeter and area of the quadrilateral ABCD in which AB = 17 cm, AD =9 cm, CD = l2cm, ∠ACB = 90° and AC=l5cm.
Let Δ be the area of a triangle. Find the area of a triangle whose each side is twice the side of the given triangle.
The base and hypotenuse of a right triangle are respectively 5 cm and 13 cm long. Its area is
A square and an equilateral triangle have equal perimeters. If the diagonal of the square is \[12\sqrt{2}\] cm, then area of the triangle is
A park is in the shape of a quadrilateral. The sides of the park are 15 m, 20 m, 26 m and 17 m and the angle between the first two sides is a right angle. Find the area of the park
A land is in the shape of rhombus. The perimeter of the land is 160 m and one of the diagonal is 48 m. Find the area of the land.