मराठी

अंतराल [-π2,π2] में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

अंतराल `[-pi/2, pi/2]` में फलन f (x) = sin2x – x, के उच्चतम तथा निम्नितम मानों का अंतर ज्ञात कीजिए।

बेरीज

उत्तर

f (x) = sin2x – x

⇒ f ′(x) = 2 cos2 x – 1

इसलिए f ′(x) = 0 ⇒ cos2x = `1/ 2 ⇒ 2x -pi/3  "या"  pi/3 ⇒ x = – pi/6  "या"  pi/6 ` है।

f `(-pi/2) = sin (- pi) + pi/2 = pi/2`

f `(-pi/6) = sin (- (2pi)/6) + pi/6 = - sqrt3/2 + pi/6`

f `(-pi/6) = sin ((2pi)/6) - pi/6 = - sqrt3/2 - pi/6`

f `(-pi/6) = sin (pi) - pi/2 = -pi/2` 

स्पष्टतया, `pi/2` उच्चतम मान है तथा `- pi/2` निम्नितम मान है।

अतः अभीष्ट अंतर = `pi/2 + pi/2 = pi`

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - हल किए हुए उदाहरण [पृष्ठ १२७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
हल किए हुए उदाहरण | Q 17 | पृष्ठ १२७

संबंधित प्रश्‍न

`pi/4` अर्ध शीर्ष कोण वाले एक शांकवीय कीप (funnel) से, जिसकां शीर्ष नीचे की ओर है, कीप के पृष्ठ के क्षेत्रफल में 2cm2/sec की समान दर से उसके शीर्ष के एक छिद्र से पानी बह रहा है। पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब उसकी तिर्यंक ऊँचाई 4cm है।


किसी शांकवीय बर्तन के शीर्ष के एक छोटे छिद्र से, जिसका अक्ष ऊर्घ्वाधर है, पानी 1 cu cm/sec की दर से बह रहा है। बर्तन में पानी के सतह की तिर्यक ऊँचाई के घटने की दर उस समय ज्ञात कीजिए जब तिर्यक ऊँचाई 4 cm हैं। शांकवीय बर्तन का शीर्ष कोण `pi/6` है।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


दो वक्र x3 – 3xy2 + 2 = 0 तथा 3x2 y – y3 = 2


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


sinx + cosx का उच्चिष्ठ मान ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


किसी घन का आयतन एक अचर दर से बढ़ रहा है। सिद्ध कीजिए कि उसके पृष्ठीय क्षेत्रफल की वृद्धि उसकी भुजा की व्युत्क्रमानुपाती है।


सिद्ध कीजिए कि वक्र xy = 4 तथा x2 + y2 = 8, एक दूसरे को स्पर्श करते हैं।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


सिद्ध किजिए कि f (x) = tan–1(sinx + cosx), अतंराल 0,`pi/4` में एक वर्धमान फलन है।


यदि किसी घन तथा गोले के पृष्ठीय क्षेत्रफल का योगफल अचर है तो घन के एक कोर (edge) तथा गोले के व्यास का अनुपात उस समय क्या है जब उनके आयतन का योगफल निम्नतम है?


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


फलन f(x) = tanx – x ______ 


बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


 f(x) = xx  का स्तब्ध बिंदु है ______


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×