Advertisements
Advertisements
प्रश्न
अवकल समीकरण `(x + 1)dy/dx = 2e^(-y) - 1` का एक विशिष्ट हल ज्ञात कीजिए। दिया हुआ है कि y = 0 यदि x = 0.
उत्तर
दिया गया समीकरण है,
`(x + 1) dy/dx = 2e^-y - 1`
⇒ `dy/(2e^-y - 1) = dx/(x + 1)` ....(1)
समाकलन करने पर, हमें `int dy/(2e^-y - 1) = int dx/(x + 1) + C` प्राप्त होता है।
⇒ `int dy/(2e^-y - 1) =log |x + 1| + C`
अब, `I = int dy/ (2e^-y - 1) = int e^y/(2 - e^y) dy`
ey = t रखें ताकि ey dy = dt हो जाए,
∴ `I = int dt/(2-t) = - log |2 - t| = - log |2 - e^y|`
(1) से, - log |2 - ey|
= log |x + 1| + C ....(2)
जब x = 0. y = 0
∴ - log |2 - 1| = log |0 + 1| + C
⇒ - log |1| = log |1| + C
⇒ 0 = 0 + C
⇒ C = 0
(2) रखने पर, - log |2 ey| = log |x + 1|
⇒ `log |2 - e^y| = log |1/ (x + 1)|`
⇒ `2 e^y = 1/(x + 1)`
⇒ `e^y = 2 - 1/ (x + 1) = (2x + 1)/(x + 1)`
⇒ `y = log |(2x + 1)/ (x + 1)|, x ne -1`
जो आवश्यक समाधान है।
APPEARS IN
संबंधित प्रश्न
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = ex + 1 : y'' - y' = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = x2 + 2x + C : y’ - 2x - 2 = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = cos x + C: y’ + sin x = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
`y = sqrt(1 + x^2) : y' (xy)/(1 + x^2)`
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = Ax : xy’ = y (x ≠ 0)
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
`y = x sin x : xy’ = y + x sqrt(x^2 - y^2)` (x ≠ 0 और x > y अथवा x < - y)
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
xy = log y + C : `y’ = y^2/(1 - xy) (xy ne 1)`
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y - cos y = x : (y sin y + cos y + x) y’ = y
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
x + y = tan-1y : y2 y’ + y2 + 1 = 0
प्रश्न में सत्यापित कीजिए कि दिया हुआ फलन (स्पष्ट अथवा अस्पष्ट),संगत अवकल समीकरण का हल है:
y = `sqrt(a^2 - x^2) x in (-a, a) : x + y dy/dx = 0 (y ne 0)`
चार कोटि वाले किसी अवकल समीकरण के व्यापक हल में उपस्थित स्वेच्छ अचरों की संख्या है:
तीन कोटि वाले किसी अवकल समीकरण के विशिष्ट हल में उपस्थित स्वेच्छ अचरों की संख्या है:
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
xy = a ex + b e-x + x2 : `x (d^2y)/dx^2 + 2 dy/dx - xy + x^2 - 2 = 0`
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
y = x sin 3x : `(d^2y)/dx^2 + 9 y - 6 cos 3x = 0`
निम्नलिखित प्रश्न को सत्यापित कीजिए कि दिया हुआ फलन (अस्पष्ट अथवा स्पष्ट) संगत अवकल समीकरण का हल है।
`x^2 = 2y^2 log y : (x^2 + y^2) dy/dx - xy = 0`
अवकल समीकरण `y e^(x/y) dx = (x e ^(x/y) + y^2) dy (y ne 0)` का हल ज्ञात कीजिए।
अवकल समीकरण (x – y)(dx + dy) = dx – dy का एक विशिष्ट हल ज्ञात कीजिए, दिया हुआ है कि y = -1, यदि x = 0.
अवकल समीकरण `[e^(- 2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x ne 0)` का हल ज्ञात कीजिए।
अवकल समीकरण `dy/dx + y cot x = 4x cosec x` (x ≠ 0) का एक विशिष्ट हल ज्ञात कीजिए। दिया हुआ है : y = 0 यदि x = `pi/2`.