मराठी

दर्शाइए कि उस AP का योग, जिसका प्रथम पद a, द्वितीय पद b और अंतिम पद c हो, (a+c)(b+c-2a)2(b-a) के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि उस AP का योग, जिसका प्रथम पद a, द्वितीय पद b और अंतिम पद c हो, `((a + c)(b + c - 2a))/(2(b - a))` के बराबर है।

बेरीज

उत्तर

दिया गया है कि, AP a, b, c है।

यहाँ, पहला पद = a,

सामान्य अंतर = b – a

और अंतिम पद, l = an = c

∵ an = l = a + (n – 1 )d

⇒ c = a + (n – 1)(b – a)

⇒ (n – 1) = `(c - a)/(b - a)`

n = `(c - a)/(b - a) + 1`

⇒ n = `(c - a + b - a)/(b - a)`

= `(c + b - 2a)/(b - a)`  ...(i)

∴ एक AP का योग,

Sn = `n/2[2a + (n - 1)d]`

= `((b + c - 2a))/(2(b - a))[2a + {(b + c - 2a)/(b - a) - 1}(b - a)]`

= `((b + c - 2a))/(2(b - a))[2a + (c - a)/(b - a) * (b - a)]`

= `((b + c - 2a))/(2(b - a))(2a + c - a)`

= `((b + c - 2a))/(2(b - a)) * (a + c)`

अतः सिद्ध हुआ।

shaalaa.com
A.P. के प्रथम N पदों का योग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: समांतर श्रेढ़ी - प्रश्नावली 5.4 [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 5 समांतर श्रेढ़ी
प्रश्नावली 5.4 | Q 7. | पृष्ठ ५९

संबंधित प्रश्‍न

निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:

-37, -33, -29,....,12 पदों तक


निम्नलिखित समांतर श्रेढ़ी का योग ज्ञात कीजिए:

`1/15,1/12,1/10`, ...., 11 पदों तक


एक A.P. में, a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।


एक A.P. में, a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।


एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अंदर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1 पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?


200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति)। ये 200 लठ्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?


प्रथम 100 प्राकृत संख्याओं के योग को ज्ञात करने से संबद्ध प्रसिद्ध गणितज्ञ ______ है।


ज्ञात कीजिए कि 55 एक AP : 7, 10, 13,... का पद है या नहीं। यदि हाँ, तो ज्ञात कीजिए कि यह कौन-सा पद है।


किसी AP का प्रथम पद −5 और अंतिम पद 45 है। यदि इस AP के पदों का योग 120 हो, तो पदों की संख्या और सार्व अंतर ज्ञात कीजिए।


किसी AP के 11 वें पद का 18 वे पद से अनुपात 2 : 3 है। 5 वें पद का 21 वें पद से अनुपात ज्ञात कीजिए तथा साथ ही प्रथम पाँच पदों के योग का प्रथम 21 पदों के योग से अनुपात ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×