मराठी

एक समचतुर्भुज के आकार की शीट (चादर), जिसका परिमाप 40 cm और एक विकर्ण 12 cm है, को दोनों ओर से 5 रु प्रति m2 की दर से पेंट किया जाता है। पेंट करवाने की लागत ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक समचतुर्भुज के आकार की शीट (चादर), जिसका परिमाप 40 cm और एक विकर्ण 12 cm है, को दोनों ओर से 5 रु प्रति m2 की दर से पेंट किया जाता है। पेंट करवाने की लागत ज्ञात कीजिए।

बेरीज

उत्तर


मान लीजिए ABCD एक समचतुर्भुज है जिसकी भुजाएँ AB = BC = CD = DA = x cm हैं।

दिया है कि एक समचतुर्भुज का परिमाप = 40 cm

`\implies` x + x + x + x = 40

`\implies` 4x = 40

`\implies x = 40/4`

∴ x = 10

ΔABC में, मान लीजिए a = AB = 10 cm, b = BC = 10 cm और c = AC = 12 cm

अब, ΔABC का अर्ध-परिमाप,

`s = (a + b + c)/2`

= `((10 + 10 + 12)/2) cm`

= `32/2 cm`

= 16 cm

∴ ΔABC का क्षेत्रफल = `sqrt(s(s - a)(s - b)(s - c))`

= `sqrt(16(16 - 10)(16 - 10)(16 - 12))  cm^2`

= `sqrt(16 xx 6 xx 6 xx 4)  cm^2`

= 48 cm2

अब, समचतुर्भुज ABCD का क्षेत्रफल

= 2(ΔABC का क्षेत्रफल)

= (2 × 48) cm2

= 96 cm2

∵ 1 cm2 की शीट को पेंट करने की लागत = रु. 5

∴ 96 cm2 की शीट को पेंट करने की लागत

= रु. (96 × 5)

= रु. 480

अत:, शीट को दोनों तरफ से रंगने का व्यय = रु. (2 × 480) = रु. 960

shaalaa.com
त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: हीरोन का सूत्र - प्रश्नावली 12.3 [पृष्ठ ११९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 12 हीरोन का सूत्र
प्रश्नावली 12.3 | Q 9. | पृष्ठ ११९

संबंधित प्रश्‍न

एक यातायात संकेत बोर्ड पर 'आगे स्कूल है’ लिखा है और यह भुजा ‘a‘ वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप 180 cm है, तो इसका क्षेत्रफल क्या होगा?


उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 cm और 10 cm हैं तथा उसका परिमाप 42 cm है।


एक समद्विबाहु त्रिभुज का परिमाप 30 cm है और उसकी बराबर भुजाएँ 12 cm लंबाई की हैं। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों की सिलाई करके एक छाता बनाया गया है (देखिए आकृति) प्रत्येक टुकड़े के माप 20 सेमी, 50 सेमी और 50 सेमी हैं। छाते में प्रत्येक रंग का कितना कपड़ा लगा है?


आधार 2 cm और बराबर भुजाओं में से एक भुजा 4 cm वाले समद्विबाहु त्रिभुज का क्षेत्रफल है


एक त्रिभुज ABC का क्षेत्रफल 8 cm2 है, जिसमें AB = AC = 4 cm है तथा ∠A = 90° है।


यदि एक समचतुर्भुज की एक भुजा 10 cm और एक विकर्ण 16 cm है, तो उस समचतुर्भुज का क्षेत्रफल 96 cm2 है। 


एक समांतर चतुर्भुज का आधार और संगत शीर्षलंब क्रमश : 10 cm और 3.5 cm हैं। उस समांतर चतुर्भुज का क्षेत्रफल 30 cm2 है।


भुजा a वाले एक समषड्भुज का क्षेत्रफल भुजा a वाले पाँच समबाहु त्रिभुजों के क्षेत्रफलों के योग के बराबर होता है।


एक समद्विबाहु त्रिभुज का परिमाप 32 cm है। एक बराबर भुजा और आधार का अनुपात 3 : 2 है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×