मराठी

एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक समकोण त्रिभुज में, सिद्ध कीजिए कि कर्ण के मध्य-बिंदु को उसके सम्मुख शीर्ष से मिलाने वाला रेखाखंड कर्ण का आधा होता है।

बेरीज

उत्तर

दिया गया है - ΔABC में, ∠B = 90° और D, AC का मध्य-बिंदु है।

रचना - BD को E तक इस प्रकार बढ़ाइए कि BD = DE और EC को मिला दे।

सिद्ध करना है - BD = `1/2` AC 


प्रमाण - ΔADB और ΔCDE में,

AD = DC  ...[∵ D, AC का मध्य-बिंदु है।] 

BD = DE   ...[रचना द्वारा]

और ∠ADB = ∠CDE  ...[शीर्षाभिमुख कोण]

∴ ΔADB ≅ ΔCDE  ...[SAS सर्वांगसमता नियम द्वारा]

⇒ AB = EC  ...[CPCT द्वारा]

और ∠BAD = ∠DCE  ...[CPCT द्वारा]

लेकिन ∠BAD और ∠DCE एकांतर कोण हैं।

तो, EC || AB और BC एक तिर्यक रेखा है।

∴ ∠ABC + ∠BCE = 180°  ...[आंतरिक कोण]

⇒ 90° + ∠BCE = 180°   ...[∵ ∠ABC = 90°, दिया गया है।]

⇒ ∠BCE = 180° – 90°

⇒ ∠BCE = 90°

ΔABC और ΔECB में,

AB = EC  ...[ऊपर सिद्ध किया गया]

BC = CB   ...[उभयनिष्ठ पक्ष]

और ∠ABC = ∠ECB   ...[प्रत्येक 90°]

∴ ΔABC ≅ ΔECB   ...[SAS सर्वांगसम नियम द्वारा]

⇒ AC = EB   ...[CPCT द्वारा]

⇒ `1/2` EB = `1/2` AC   ...[दोनों पक्षों को 2 से विभाजित करने पर]

⇒ BD = `1/2` AC   

अतः सिद्ध हुआ।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 7 त्रिभुज
प्रश्नावली 7.4 | Q 14. | पृष्ठ ७१

संबंधित प्रश्‍न

एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


यदि ∆PQR ≅ ∆EDF है, तो क्या यह कहना सत्य है कि PR = EF है? अपने उत्तर के लिए कारण दीजिए।


क्या भुजाओं की लंबाइयाँ 8 cm, 7 cm और 4 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक समद्विबाहु त्रिभुज के कोणों B और C के समद्विभाजक परस्पर O पर प्रतिच्छेद करते हैं। BO को एक बिंदु M तक बढ़ाया जाता है। सिद्ध कीजिए कि ∠MOC = ∠ABC है।


निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है।


O एक वर्ग ABCD के अभ्यंतर में स्थित बिंदु इस प्रकार है कि OAB एक समबाहु त्रिभुज है। सिद्ध कीजिए कि ∆OCD एक समद्विबाहु त्रिभुज है। 


ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। AD और BE क्रमश : BC और AC पर शीर्षलंब हैं। सिद्ध कीजिए कि AE = BD है।


एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।


ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×