Advertisements
Advertisements
प्रश्न
एक त्रिभुज ABC में, D भुजा AC का मध्य-बिंदु है ताकि BD = `1/2` AC है। दर्शाइए कि ∠ABC एक समकोण है।
उत्तर
दिया गया है - ΔABC में, D, AC का मध्य-बिंदु है, अर्थात, AD = CD इस प्रकार है कि BD = `1/2` AC है।
दर्शाना है - ∠ABC = 90°
प्रमाण - हमारे पास, BD = `1/2` AC ...(i)
चूँकि D, AC का मध्य-बिंदु है।
∴ AD = CD = `1/2` AC ...(ii)
समीकरण (i) और (ii) से,
AD = CD = BD
ΔDAB में, AD = BD ...[ऊपर सिद्ध]
∴ ∠ABD = ∠BAD ...(iii) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
∆DBC में, BD = CD ...[ऊपर सिद्ध किया गया]
∴ ∠BCD = ∠CBD ...(iv) [समान भुजाओं के सम्मुख कोण बराबर होते हैं।]
ΔABC में, ∠ABC + ∠BAC + ∠ACB = 180° ...[त्रिभुज के कोण योग गुण द्वारा]
⇒ ∠ABC + ∠BAD + ∠DCB = 180°
⇒ ∠ABC + ∠ABD + ∠CBD = 180° ...[समीकरण (iii) और (iv) से]
⇒ ∠ABC + ∠ABC = 180°
⇒ 2∠ABC = 180°
⇒ ∠ABC = 90°
APPEARS IN
संबंधित प्रश्न
एक रेखाखंड AB पर AD और BC दो बराबर लंब रेखाखंड हैं (देखिए आकृति)। दशाईए कि CD, रेखाखंड AB को समद्विभाजित करता है।
AB एक रेखाखंड है और P इसका मध्य-बिंदु है। D और E रेखाखंड AB के एक ही ओर स्थित दो बिंदु इस प्रकार हैं कि ∠BAD = ∠ABE और ∠EPA = ∠DPB है। (देखिए आकृति)। दर्शाइए कि:
- △DAP ≌ △EBP
- AD = BE
ABC एक समकोण त्रिभुज है, जिसमें ∠A = 90° और AB = AC है। ∠B और ∠C ज्ञात कीजिए।
△ABC और △DBC एक ही आधार BC पर बने दो समद्विबाहु त्रिभुज इस प्रकार हैं कि A और D भुजा BC के एक ही ओर स्थित हैं (देखिए आकृति)। यदि AD बढ़ाने पर BC को P पर प्रतिच्छेद करे, तो दर्शाइए कि:
- △ABD ≌ △ACD
- △ABP ≌ △ACP
- AP कोण A और कोण D दोनों को समद्विभाजित करता है।
- AP रेखाखंड BC का लम्ब समद्विभाजक है।
∆ABC ≅ ∆RPQ दिया हुआ है। क्या यह कहना सत्य है कि BC = QR है? क्यों?
AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।
ABC एक समकोण त्रिभुज है, जिसमें AB = AC है। ∠A का समद्विभाजक BC से D पर मिलता है। सिद्ध कीजिए कि BC = 2AD है।
AB और CD क्रमश : एक चतुर्भुज ABCD की सबसे छोटी और सबसे बड़ी भुजाएं हैं। ∠B और ∠D में से निश्चित कीजिए कि कौन बड़ा हैं।
सिद्ध कीजिए कि एक समबाहु त्रिभुज को छोड़कर, किसी त्रिभुज में सबसे लंबी भुजा का सम्मुख कोण एक समकोण के `2/3` भाग से बड़ा होता हैं।
ABCD एक चतुर्भुज है, जिसमें AB = AD और CB = CD है। सिद्ध कीजिए कि AC, BD का लंब समद्विभाजक है।