मराठी

एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज की भुजाओं PQ और QR तथा माध्यिका PN के बराबर है (देखिए आकृति)। दर्शाइए कि: i. ∆ABM ≅ ∆PQN ii. ∆ABC ≅ ∆PQR - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज ABC की दो भुजाएँ AB और BC तथा माध्यिका AM क्रमशः एक दूसरे त्रिभुज की भुजाओं PQ और QR तथा माध्यिका PN के बराबर है (देखिए आकृति)। दर्शाइए कि:
  1. ∆ABM ≅ ∆PQN
  2. ∆ABC ≅ ∆PQR

बेरीज

उत्तर

ΔABC में, AM, BC की माध्यिका है।

∴ BM = `1/2 BC`

ΔPQR में, PN, QR की माध्यिका है।

∴ QN = `1/2QR`

हालाँकि, BC = QR

∴ `1/2BC` = `1/2QR`

⇒ BM = QN             …(1)

(i) ΔABM और ΔPQN में,

AB = PQ           ...(दिया गया है)

BM = QN         ...[समीकरण (1) से]

AM = PN        ...(दिया गया है)

∴ ΔABM ≅ ΔPQN        ...(SSS सर्वांगसमता नियम)

∠ABM = ∠PQN           ...(सर्वांगसम त्रिभुजों के संगत भागों द्वारा)

∠ABC = ∠PQR          …(2)

(ii) ΔABC और ΔPQR में,

AB = PQ                 ...(दिया गया है)

∠ABC = ∠PQR       ...[समीकरण (2) से]

BC = QR                ...(दिया गया है)

⇒ ΔABC ≅ ΔPQR     ...(SAS सर्वांगसमता नियम से)

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: त्रिभुज - प्रश्नावली 7.3 [पृष्ठ १५४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 7 त्रिभुज
प्रश्नावली 7.3 | Q 3. | पृष्ठ १५४

संबंधित प्रश्‍न

l और m दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं p और q का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति) दर्शाइए कि: △ABC ≌ △CDA है।


AD एक समद्विबाहु त्रिभुज ABC का एक शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि:

  1. AD रेखाखंड BC को समद्विभाजित करता है।
  2. AD कोण A को समद्विभाजित करता है।

त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिंदु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2 AM से अधिक है? अपने उत्तर के लिए कारण दीजिए।


AB = AC वाले एक ∆ABC की भुजा, AC पर D कोई बिंदु स्थित है। दर्शाइए कि CD < BD है।


निम्नलिखित आकृति में, l || m है तथा M रेखाखंड AB का मध्य-बिंदु है। दर्शाइए कि M किसी भी रेखाखंड CD का मध्य-बिंदु है जिसके अंत:बिंदु क्रमश : l और m पर स्थित है।


निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है।


ABC और DBC एक ही आधार BC पर स्थित दो त्रिभुज इस प्रकार हैं कि बिंदु A और D आधार BC के विपरीत ओर स्थित हैं, AB = AC और DB = DC है। दर्शाइए कि AD रेखाखंड BC का लंब समद्विभाजक है। 


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।


ABC एक समकोण त्रिभुज है, जिसमें AB = AC है तथा ∠C का समद्विभाजक भुजा AB को D पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AC + AD = BC है। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×