मराठी

Find a unit vector in the direction of PQPQ→, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively - Mathematics

Advertisements
Advertisements

प्रश्न

Find a unit vector in the direction of `vec"PQ"`, where P and Q have co-ordinates (5, 0, 8) and (3, 3, 2), respectively

बेरीज

उत्तर

Given coordinates are P(5, 0, 8) and Q(3, 3, 2)

∴ `vec"PQ"` = `(3 - 5)hat"i" + (3 - 0)hat"j" + (2 - 8)hat"k"`

= `-2hat"i" + 3hat"j" - 6hat"k"`

∴ Unit vector in the direction of `vec"PQ" = vec"PQ"/|vec"PQ"|`

= `(-2hat"i" + 3hat"j" - 6hat"k")/sqrt((-2)^2 + (3)^2 + (-6)^2)`

= `(-2hat"i" + 3hat"j" - 6hat"k")/sqrt(4 + 9 + 36)`

= `(-2hat"i" + 3hat"j" - 6hat"k")/sqrt(49)`

= `(-2hat"i" + 3hat"j" - 6hat"k")/7`

= `1/7 (-2hat"i" + 3hat"j" - 6hat"k")`

Hence, the required unit vector is `1/7 (-2hat"i" + 3hat"j" - 6hat"k")`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise [पृष्ठ २१५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise | Q 3 | पृष्ठ २१५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If \[\overrightarrow{a}\] and \[\overrightarrow{b}\] denote the position vectors of points A and B respectively and C is a point on AB such that 3AC = 2AB, then write the position vector of C.


Find the position vector of the mid-point of the line segment AB, where A is the point (3, 4, −2) and B is the point (1, 2, 4).


For what value of 'a' the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} \text{ and }a \hat{i} + 6 \hat{j} - 8 \hat{k}\]  are collinear?


If \[\left| \overrightarrow{a} \right| = 4\] and \[- 3 \leq \lambda \leq 2\], then write the range of \[\left| \lambda \vec{a} \right|\].


If O and O' are circumcentre and orthocentre of ∆ ABC, then \[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\] equals 


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] and \[\vec{d}\] are the position vectors of points A, B, C, D such that no three of them are collinear and \[\vec{a} + \vec{c} = \vec{b} + \vec{d} ,\] then ABCD is a


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


Find the area of the traingle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).


Select the correct option from the given alternatives:

Let a, b, c be distinct non-negative numbers. If the vectors `"a"hat"i" + "a"hat"j" + "c"hat"k" , hat"i" + hat"k"  "and"  "c"hat"i" + "c"hat"j" + "b"hat"k"` lie in a plane, then c is


Select the correct option from the given alternatives:

If `bar"a", bar"b", bar"c"` are non-coplanar unit vectors such that `bar"a"xx (bar"b"xxbar"c") = (bar"b"+bar"c")/sqrt2`, then the angle between `bar"a"  "and"  bar"b"` is 


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


Two sides of a parallelogram are `3hat"i" + 4hat"j" - 5hat"k"` and  `-2hat"j" + 7hat"k"`. Find the unit vectors parallel to the diagonals.


If `bar"OA" = bar"a" and bar"OB" = bar"b",` then show that the vector along the angle bisector of ∠AOB is given by `bar"d" = lambda(bar"a"/|bar"a"| + bar"b"/|bar"b"|).`


A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.


If ABC is a triangle whose orthocentre is P and the circumcentre is Q, prove that `bar"PA" + bar"PB" + bar"PC" = 2bar"PQ".`


Find the acute angle between the curves at their points of intersection, y = x2, y = x3.


Let bar"b" = 4hat"i" + 3hat"j" and bar"c" be two vectors perpendicular to each other in the XY-plane. Find the vector in the same plane having projection 1 and 2 along bar"b" and bar"c" respectively.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a" xx bar"b").(bar"c"xxbar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b")bar"c"`


If `vec"a", vec"b", vec"c"` are unit vectors such that `vec"a" + vec"b" + vec"c"` = 0, then the value of `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` is ______.


The formula `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` is valid for non-zero vectors `vec"a"` and `vec"b"`


Classify the following measures as scalar and vector.

10-19 coulomb


The unit vector perpendicular to the vectors `6hati + 2hatj + 3hatk` and `3hati - 6hatj - 2hatk` is


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


If `|veca| = 3, |vecb| = sqrt(2)/3` and `veca xx vecb` is a unit vector then the angle between `veca` and `vecb` will be ______.


In the triangle PQR, `bb(bar(PQ) = 2  bara)` and `bb(bar(QR) = 2  barb)`. The mid-point of PR is M. Find the following vectors in terms of `bb(bara and barb)`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×