मराठी

Find the Lengths of the Medians of a ∆ABC Whose Vertices Are A(7, –3), B(5,3) and C(3,–1) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the lengths of the medians of a ∆ABC whose vertices are A(7, –3), B(5,3) and C(3,–1)

बेरीज

उत्तर १

Let D, E, F be the mid-points of the sides BC, CA and AB respectively. Then, the coordinates of D, E and F are

D(5+32, 3-12)=D(4, 1),

E(3+72, -1-32)=E(5,-2)

F(7+52,3-(-3)2)=F(6,3)

AD=(7-4)2+(-3-1)2=9+16=5

BE=(5-5)2+(-2-3)2=0+25=5

CF=(6-3)2+(3-(-1))2=9+16=5

 the lengths of the medians is 5

shaalaa.com

उत्तर २

The given vertices are A(7, –3), B(5,3) and C(3,–1).

Since D and E are the midpoints of BC and AC respectively. therefore

Coordinates of D=(5+32,3-12)=(4,1)

Coordinates of E=(7+32,-3-12)=(5,-2)

Now , 

AD=(7-4)2+(-3-1)2=9+16=5

BE=(5-5)2+(3+2)2=0+25=5

Hence, AD = BE = 5 units.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Coordinate Geomentry - Exercises 4

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 16 Coordinate Geomentry
Exercises 4 | Q 7

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.