मराठी

For the Wave Described in Exercise 15.8, Plot the Displacement (Y) Versus (T) Graphs for X = 0, 2 and 4 Cm. What Are the Shapes of These Graphs? in Which Aspects Does the Oscillatory Motion in Travelling Wave Differ from One Point to Another: Amplitude, Frequency Or Phase? - Physics

Advertisements
Advertisements

प्रश्न

For the wave described in Exercise 15.8, plot the displacement (y) versus (t) graphs for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does the oscillatory motion in travelling wave differ from one point to another: amplitude, frequency or phase?

उत्तर १

All the waves have different phases.

The given transverse harmonic wave is:

`y (x,t)= 3.0 sin (36t + 0.018x + pi/4)` ...(i)

For x = 0, the equation reduces to:

`y (0,t) = 3.0 sin (36t + pi/4)`

Also, `omega = (2pi)/T = 36 " rad/s"^(-1)`

`:. T = pi/8 s`

Now, plotting y vs. t graphs using the different values of t, as listed in the given table.

t(s) 0 T/8 2T/8 3T/8 4T/8 5T/8 6T/8 7T/8
y(cm) `(3sqrt2)/2` 3 `(3sqrt2)/2` 0 `(-3sqrt2)/2` -3 `(-3sqrt2)/2` 0

For x = 0, x = 2, and x = 4, the phases of the three waves will get changed. This is because amplitude and frequency are invariant for any change in x. The y-t plots of the three waves are shown in the given figure.

shaalaa.com

उत्तर २

The transverse harmonic wave is

`y(x,t) = 3.0 sin (36t + 0.018x + pi/4)`

for x = 0

`y(0,t) = 3 sin(36t + 0 + pi/4) = 3 sin (36t + pi/4)`  ...1

Here `omega = (2pi)/T = 36 => T =(2pi)/36`

To plot a(y) versus (t) graph, different values of y corresponding to the values of t may be tabulated as under (by making use of equation 1)

 

t(s) 0 T/8 2T/8 3T/8 4T/8 5T/8 6T/8 7T/8 T
y(cm) `(3sqrt2)/2` 3 `(3sqrt2)/2` 0 `(-3sqrt2)/2` -3 `(-3sqrt2)/2` 0 `3/sqrt2`

Using the values of t and y (as in the table), a graph is plotted as under The graph obtained is sinusoidal.
Similar graphs are obtained for y x = 2 cm and x = 4 cm. The (incm) oscillatory motion in the travelling wave only differs in respect of phase. Amplitude and frequency of oscillatory motion remains the same in all the cases.

shaalaa.com
The Speed of a Travelling Wave
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Waves - Exercises [पृष्ठ ३८७]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 15 Waves
Exercises | Q 9 | पृष्ठ ३८७

संबंधित प्रश्‍न

A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.


Choose the correct option:

Which of the following equations represents a wave travelling along Y-axis? 


A wave travelling on a string at a speed of 10 m s−1 causes each particle of the string to oscillate with a time period of 20 ms. (a) What is the wavelength of the wave? (b) If the displacement of a particle of 1⋅5 mm at a certain instant, what will be the displacement of a particle 10 cm away from it at the same instant?


A 2⋅00 m-long rope, having a mass of 80 g, is fixed at one end and is tied to a light string at the other end. The tension in the string is 256 N. (a) Find the frequencies of the fundamental and the first two overtones. (b) Find the wavelength in the fundamental and the first two overtones.


An organ pipe of length 0.4 m is open at both ends. The speed of sound in the air is 340 m/s. The fundamental frequency is ______ 


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of `λ/2`.


Speed of sound wave in air ______.


At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×