Advertisements
Advertisements
प्रश्न
From the given figure, find all the trigonometric ratios of angle B
उत्तर
Sin B = `"opposite side"/"hypotenuse" = 9/41`
cos B = `"adjacent side"/"hypotenuse" = 40/41`
tan B = `"opposite side"/"adjacent side" = 9/40`
cosec B = `"hypotenuse"/"opposite side" = 41/9`
sec B = `"hypotenuse"/"adjacent side" = 41/40`
cot B = `"adjacent side"/"opposite side" = 40/9`
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA