Advertisements
Advertisements
प्रश्न
गुणनखंड कीजिए :
2x3 – 3x2 – 17x + 30
उत्तर
माना p(x) = 2x3 – 3x2 – 17x + 30
p(x) का अचर पद = 30
∴ 30 के गुणनखंड ±1, ±2, ±3, ±5, ±6, ±10, ±15, ±30 हैं।
परीक्षण से, हम पाते हैं कि p(2) = 0, इसलिए (x – 2) का एक गुणनखंड है। ...[∵ 2(2)3 – 3(2)2 – 17(2) + 30 = 16 – 12 – 34 + 30 = 0]
अब, हम देखते हैं कि 2x3 – 3x2 – 17x + 30
= 2x3 – 4x2 + x2 – 2x – 15x + 30
= 2x2(x – 2) + x(x – 2) – 15(x – 2)
= (x – 2)(2x2 + x – 15) ...[(x – 2) सामान्य कारक लेना]
अब, (2x2 + x – 15) को या तो मध्य अवधि को विभाजित करके या कारक प्रमेय का उपयोग करके कारक बनाया जा सकता है।
अब, (2x2 – x – 15) = 2x2 + 6x – 5x – 15 ...[मध्य पद को विभाजित करके]
= 2x(x + 3) – 5(x + 3)
= (x + 3)(2x – 5)
∴ 2x3 – 3x2 – 17x + 30 = (x – 2)(x + 3)(2x – 5)
APPEARS IN
संबंधित प्रश्न
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
गुणनखंड ज्ञात कीजिए:
2y3 + y2 - 2y - 1
निम्नलिखित में x2 का गुणांक लिखिए :
3x – 5
m का मान ज्ञात कीजिए ताकि 2x – 1 बहुपद 8x4 + 4x3 – 16x2 + 10x + m का एक गुणनखंड हो।
निम्नलिखित के गुणनखंड कीजिए :
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
निम्नलिखित का प्रसार कीजिए :
`(1/x + y/3)^3`
निम्नलिखित गुणनफल ज्ञात कीजिए :
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
निम्नलिखित के मान ज्ञात कीजिए :
x3 – 8y3 – 36xy – 216, जब x = 2y + 6 है।
x2 + 4y2 + z2 + 2xy + xz – 2yz को (–z + x – 2y) से गुणा कीजिए।
सिद्ध कीजिए की, (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a) है।