मराठी

Given Below Are Densities of Some Solids and Liquids. Give Rough Estimates of the Size of Their Atoms: - Physics

Advertisements
Advertisements

प्रश्न

Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Substance Atomic Mass (u) Density (10Kg m-3)
Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].

उत्तर १

Substance Radius (Å)
Carbon (diamond) 1.29
Gold 1.59
Nitrogen (liquid) 1.77
Lithium 1.73
Fluorine (liquid) 1.88

Atomic mass of a substance = M

Density of the substance = ρ

Avogadro’s number = N = 6.023 × 1023

Volume of each atom = `4/3 pi r^3`

Volume of N number of molecules = `4/3 pir^3N` ... (i)

Volume of one mole of a substance = `M/rho` ... (ii)

`4/3 pir^3 N = M/rho`

`:. r = root(3)((3m)/(4pirhoN))`

For carbon

M = 12.01 × 10–3 kg,

ρ = 2.22 × 103 kg m–3

`:. r = ((3xx12.01xx10^(-3))/(4pixx2.22xx10^3xx6.023xx 10^23))^(1/3)` = 1.29 Å

For gold:

M = 197.00 × 10–3 kg

ρ = 19.32 × 103 kg m–3

:. r = `((3xx197xx10^3)/(4pixx19.32xx10^3xx6.023xx10^23))^(1/3)` = 1.59 Å

Hence, the radius of a gold atom is 1.59 Å.

For liquid nitrogen:

M = 14.01 × 10–3 kg

ρ = 1.00 × 103 kg m–3

`:. r = ((3xx14.01xx10^(-3))/(4pixx1.00xx10^3xx 6.23 xx10^23))^(1/3)` = 1.77 Å

Hence, the radius of a liquid nitrogen atom is 1.77 Å.

For lithium:

M = 6.94 × 10–3 kg

ρ = 0.53 × 103 kg m–3

`:. r= ((3xx6.94xx10^(-3))/(4pixx0.53xx10^3xx6.23xx10^23))^(1/3)` = 1.73 Å

Hence, the radius of a lithium atom is 1.73 Å.

For liquid fluorine:

M = 19.00 × 10–3 kg

ρ = 1.14 × 103 kg m–3

`:. r= ((3xx19xx10^(-3))/(4pixx1.14xx10^3xx6.023xx10^23))^(1/3)` = = 1.88 Å

Hence, the radius of a liquid fluorine atom is 1.88 Å.

shaalaa.com

उत्तर २

In one mole of a substance, there are 6.023 x 1023 atoms

`:. (4/3 pi R^3) xx 6.023 xx 10^23 = M/rho`

or ` R = [(3M)/(4pirho xx 6.023xx10^23)]^(1/3)`

For carbon  = `12.01 xx 10^(-3)` kg and `rho = 2.22 xx 10^3 "kg m"^(-3)`

`:. R = [(3xx12.01xx10^(-3))/(4xx3.14xx2.22xx10^3xx6.023xx10^23)]^(1/3)`

= `1.29 xx 10^(10) m` = 1.29 Å

For gold, M = `197 xx10^(-3)` kg and `rho = 19.32 xx 10^3 "kg m"^(-3)`

`:. R = [(3xx197xx10^(-3))/(4xx3.14xx19.32xx10^3 xx 6.023 xx 10^(23))]^(1/3)`

= 1.59 xx 10^(-10) m = 1.59 Å

For nitrogen (liquid), `M= 14.01 xx 10^(-3)` kg and `rho = 1.00 xx 10^3 "kg  m"^(-3)`

`R = [(3xx14.01xx10^(-3))/(4xx3.14xx100xx10^3xx6.023xx10^23)]^(1/3)`

 = `1.77 xx 10^(-10)m` = 1.77  Å

For lithium, M= `6.94 xx 10^(-3)` kg, `rho = 0.53 xx 10^3 "kg m"^(-3)`

`:. R = [(3xx6.94xx10^(-3))/(4xx3.14xx0.53xx10^3xx6.023xx10^(23))]^(1/3)`

`= 1.73 xx 10^(-10)`  = 1.73 Å

For fluorine (liquid), M = `19.00 xx 10^(-3)` kg, `rho = 1.14 xx 10^3 "kg m"^(-3)`

`:. R = [(3xx19.00xx10^(-3))/(4xx3.14xx1.14xx10^3xx6.023xx10^(23))]^(`1/3)`

`= 1.88 xx 10^(-10)m` = 1.88 Å

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Kinetic Theory - Exercises [पृष्ठ ३३५]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 13 Kinetic Theory
Exercises | Q 14 | पृष्ठ ३३५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?


Can we define specific heat capacity for an adiabatic process?


In a real gas, the internal energy depends on temperature and also on volume. The energy increases when the gas expands isothermally. Examining the derivation of Cp − Cv = R, find whether Cp − Cv will be more than R, less than R or equal to R for a real gas.


Show that the slope of the p−V diagram is greater for an adiabatic process compared to an isothermal process.


In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about


Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.


5 g of a gas is contained in a rigid container and is heated from 15°C to 25°C. Specific heat capacity of the gas at constant volume is 0.172 cal g−1 °C−1 and the mechanical equivalent of heat is 4.2 J cal−1. Calculate the change in the internal energy of the gas


An ideal gas expands from 100 cm3 to 200 cm3 at a constant pressure of 2.0 × 105 Pa when 50 J of heat is supplied to it. Calculate (a) the change in internal energy of the gas (b) the number of moles in the gas if the initial temperature is 300 K (c) the molar heat capacity Cp at constant pressure and (d) the molar heat capacity Cv at constant volume.


Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______. 


If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×