मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In a Real Gas, the Internal Energy Depends on Temperature and Also on Volume. the Energy Increases When the Gas Expands Isothermally. - Physics

Advertisements
Advertisements

प्रश्न

In a real gas, the internal energy depends on temperature and also on volume. The energy increases when the gas expands isothermally. Examining the derivation of Cp − Cv = R, find whether Cp − Cv will be more than R, less than R or equal to R for a real gas.

थोडक्यात उत्तर

उत्तर

In a real gas, as the internal energy depends on temperature and volume, the derived equation for an ideal gas 

(dQ)P = (dQ)v + nRdT will change to

(dQ)P = (dQ)v + nRdT+ k ,where k is the change in internal energy (positive) due to change in volume when pressure is kept constant. So, in the case of a real gas, for n=1 mole (say),

 CP -Cv =R + `k/(dt)`

⇒ CP - Cv > R,

where Cp and Cv are the specific heat capacities at constant pressure and volume, respectively.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Specific Heat Capacities of Gases - Short Answers [पृष्ठ ७६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 5 Specific Heat Capacities of Gases
Short Answers | Q 5 | पृष्ठ ७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?


Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Substance Atomic Mass (u) Density (10Kg m-3)
Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].


Can we define specific heat capacity for an adiabatic process?


Can a process on an ideal gas be both adiabatic and isothermal?


Show that the slope of the p−V diagram is greater for an adiabatic process compared to an isothermal process.


Can two states of an ideal gas be connected by an isothermal process as well as an adiabatic process?


Two samples A and B are initially kept in the same state. Sample A is expanded through an adiabatic process and the sample B through an isothermal process. The final volumes of the samples are the same. The final pressures in A and B are pA and pBrespectively.


Let ∆Wa and ∆Wb be the work done by the systems A and B, respectively, in the previous question.


Consider the processes A and B shown in the figure. It is possible that


Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.


5 g of a gas is contained in a rigid container and is heated from 15°C to 25°C. Specific heat capacity of the gas at constant volume is 0.172 cal g−1 °C−1 and the mechanical equivalent of heat is 4.2 J cal−1. Calculate the change in the internal energy of the gas


An ideal gas expands from 100 cm3 to 200 cm3 at a constant pressure of 2.0 × 105 Pa when 50 J of heat is supplied to it. Calculate (a) the change in internal energy of the gas (b) the number of moles in the gas if the initial temperature is 300 K (c) the molar heat capacity Cp at constant pressure and (d) the molar heat capacity Cv at constant volume.


A mixture  contains 1 mole of helium (Cp = 2.5 R, Cv = 1.5 R) and 1 mole of hydrogen (Cp= 3.5 R, Cv = 2.5 R). Calculate the values of Cp, Cv and γ for the mixture.


Air (γ = 1.4) is pumped at 2 atm pressure in a motor tyre at 20°C. If the tyre suddenly bursts, what would be the temperature of the air coming out of the tyre? Neglect any mixing with the atmospheric air.


4.0 g of helium occupies 22400 cm3 at STP. The specific heat capacity of helium at constant pressure is 5.0 cal K−1 mol−1. Calculate the speed of sound in helium at STP.


Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______. 


An engine takes in 5 moles of air at 20°C and 1 atm, and compresses it adiabatically to `1/10^"th"` of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be X kJ. The value of X to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×