मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Given below is the triangle and length of line segments. Identify in the given figure, ray PM is the bisector of ∠QPR. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Given below is the triangle and length of line segments. Identify in the given figure, ray PM is the bisector of ∠QPR.

बेरीज

उत्तर

In ΔPQR,

`"PR"/"PQ" = 7/10`    .....(i)

`"RM"/"QM" = 6/8`   ......(ii)

From (i) and (ii),

`"PR"/"PQ" ≠ "RM"/"QM"`

∴ Ray PM is not the bisector of ∠QPR.

shaalaa.com
Property of an Angle Bisector of a Triangle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Similarity - Practice Set 1.2 [पृष्ठ १३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 1 Similarity
Practice Set 1.2 | Q 1.2 | पृष्ठ १३

संबंधित प्रश्‍न

Given below is the triangle and length of line segments. Identify in the given figure, ray PM is the bisector of ∠QPR.


Given below is the triangle and length of line segments. Identify in the given figure, ray PM is the bisector of ∠QPR.


In ∆MNP, NQ is a bisector of ∠N. If MN = 5, PN = 7 MQ = 2.5 then find QP. 


Measures of some angles in the figure are given. Prove that `"AP"/"PB" = "AQ"/"QC"`.


Find QP using given information in the figure.


In the given figure, if AB || CD || FE then find x and AE. 


In ∆PQR seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR. 


Complete the proof by filling in the boxes.

In △PMQ, ray MX is bisector of ∠PMQ.

∴ `square/square = square/square` .......... (I) theorem of angle bisector.

In △PMR, ray MY is bisector of ∠PMQ.

∴ `square/square = square/square` .......... (II) theorem of angle bisector.

But `(MP)/(MQ) = (MP)/(MR)` .......... M is the midpoint QR, hence MQ = MR.

∴ `(PX)/(XQ) = (PY)/(YR)`

∴ XY || QR .......... converse of basic proportionality theorem.


In the given fig, bisectors of ∠B and ∠C of ∆ABC intersect each other in point X. Line AX intersects side BC in point Y. AB = 5, AC = 4, BC = 6 then find `"AX"/"XY"`.


In Δ ABC and Δ PQR,
∠ ABC ≅ ∠ PQR, seg BD and
seg QS are angle bisector.
`If  (l(AD))/(l(PS)) = (l(DC))/(l(SR))`
Prove that : Δ ABC ∼ Δ PQR


From the top of a light house, an abserver looking at a boat makes an angle of depression of 600. If the height of the lighthouse is 90 m then find how far is the boat from the lighthouse. (3 = 1.73)


In ΔABC, ray BD bisects ∠ABC.

If A – D – C, A – E – B and seg ED || side BC, then prove that:

`("AB")/("BC") = ("AE")/("EB")`

Proof : 

In ΔABC, ray BD bisects ∠ABC.

∴ `("AB")/("BC") = (......)/(......)`   ......(i) (By angle bisector theorem)

In ΔABC, seg DE || side BC

∴ `("AE")/("EB") = ("AD")/("DC")`   ....(ii) `square`

∴ `("AB")/square = square/("EB")`   [from (i) and (ii)]


In ΔABC, ∠ACB = 90°. seg CD ⊥ side AB and seg CE is angle bisector of ∠ACB.

Prove that: `(AD)/(BD) = (AE^2)/(BE^2)`.


Draw seg AB = 6.8 cm and draw perpendicular bisector of it. 


In the following figure, ray PT is the bisector of QPR Find the value of x and perimeter of QPR.


Draw the circumcircle of ΔPMT in which PM = 5.6 cm, ∠P = 60°, ∠M = 70°.


From the information given in the figure, determine whether MP is the bisector of ∠KMN.



In ∆PQR seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR. 

Complete the proof by filling in the boxes.

solution:

In ∆PMQ,

Ray MX is the bisector of ∠PMQ.

∴ `("MP")/("MQ") = square/square` .............(I) [Theorem of angle bisector]

Similarly, in ∆PMR, Ray MY is the bisector of ∠PMR.

∴ `("MP")/("MR") = square/square` .............(II) [Theorem of angle bisector]

But `("MP")/("MQ") = ("MP")/("MR")`  .............(III) [As M is the midpoint of QR.] 

Hence MQ = MR

∴ `("PX")/square = square/("YR")`  .............[From (I), (II) and (III)]

∴ XY || QR   .............[Converse of basic proportionality theorem]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×