Advertisements
Advertisements
प्रश्न
Given: log3 m = x and log3 n = y.
If 2 log3 A = 5x - 3y; find A in terms of m and n.
उत्तर
Given that log3m = x and log3n = y
⇒ 3x = m and 3y = n
Consider the given expression :
2log3A = 5x - 3y
⇒ 2log3A = 5 log3m - 3log3n
⇒ log3A2 = log3m5 - log3n3
⇒ log3A2 = `log_3( m^5/ n^3 )`
⇒ A2 = `( m^5/ n^3 )`
⇒ A = `sqrt(( m^5/n^3 ))`
APPEARS IN
संबंधित प्रश्न
If log (a + b) = log a + log b, find a in terms of b.
Simplify : log (a)3 - log a
Express the following in terms of log 5 and/or log 2: log125
Express the following in terms of log 2 and log 3: `"log"(26)/(51) - "log"(91)/(119)`
Express the following in terms of log 2 and log 3: `"log"(225)/(16) - 2"log"(5)/(9) + "log"(2/3)^5`
Write the logarithmic equation for:
V = `(1)/("D"l) sqrt("T"/(pi"r")`
Express the following as a single logarithm:
`2 "log" 3 - (1)/(2) "log" 16 + "log" 12`
If 2 log x + 1 = 40, find: x
If log 2 = 0.3010, log 3 = 0.4771 and log 5 = 0.6990, find the values of: `"log" sqrt(72)`
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`