मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

How Many Time Constants Will Elapse before the Power Delivered by a Battery Drops to Half of Its Maximum Value in an Rc Circuit? - Physics

Advertisements
Advertisements

प्रश्न

How many time constants will elapse before the power delivered by a battery drops to half of its maximum value in an RC circuit?

बेरीज

उत्तर

Power = CV2 = q × V

Now,

\[\frac{qV}{2} = qV \times e^{- t/rc} \]

\[ \Rightarrow \frac{1}{2} = e^{- t/rc} \]

\[ \Rightarrow \frac{t}{rc} = - \ln \left( 0 . 5 \right)\]

\[ = - \left( - 0 . 69 \right) = 0 . 69\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - Exercises [पृष्ठ २०३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
Exercises | Q 73 | पृष्ठ २०३

संबंधित प्रश्‍न

Two cells of emfs 1.5 V and 2.0 V,  having internal resistances 0.2 Ω and 0.3 Ω, respectively, are connected in parallel. Calculate the emf and internal resistance of the equivalent cell.


Two identical cells of emf 1.5 V each joined in parallel, supply energy to an external circuit consisting of two resistances of 7 Ω each joined in parallel. A very high resistance voltmeter reads the terminal voltage of cells to be 1.4 V. Calculate the internal resistance of each cell.


Distinguish between emf and terminal voltage of a cell.


A cell of emf 'E' and internal resistance 'r' is connected across a variable resistor 'R'. Plot a graph showing variation of terminal voltage 'V' of the cell versus the current 'I'. Using the plot, show how the emf of the cell and its internal resistance can be determined.


The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4 Ω, what is the maximum current that can be drawn from the battery?


A storage battery of emf 8.0 V and internal resistance 0.5 Ω is being charged by a 120 V dc supply using a series resistor of 15.5 Ω. What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?


Six lead-acid types of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. What are the current drawn from the supply and its terminal voltage?


A resistor R is connected to a cell of-emf e and internal resistance r. The potential difference across the resistor R is found to be V. State the relation between e, V, Rand r.


Two cells of emf E1, E2 and internal resistance r1 and r2 respectively are connected in parallel as shown in the figure.

Deduce the expressions for

(1) the equivalent e.m.f of the combination

(2) the equivalent resistance of the combination, and

(3) the potential difference between the point A and B.


Two non-ideal batteries are connected in series. Consider the following statements:-

(A) The equivalent emf is larger than either of the two emfs.

(B) The equivalent internal resistance is smaller than either of the two internal resistances.


Consider N = n1n2 identical cells, each of emf ε and internal resistance r. Suppose n1 cells are joined in series to form a line and n2 such lines are connected in parallel.

The combination drives a current in an external resistance R. (a) Find the current in the external resistance. (b) Assuming that n1 and n2 can be continuously varied, find the relation between n1, n2, R and r for which the current in R is maximum.


A battery of emf 100 V and a resistor of resistance 10 kΩ are joined in series. This system is used as a source to supply current to an external resistance R. If R is not greater than 100 Ω, the current through it is constant up to two significant digits.
Find its value. This is the basic principle of a constant-current source.


Find the equivalent resistance of the network shown in the figure between the points a and b.


Apply the first law of thermodynamics to a resistor carrying a current i. Identify which of the quantities ∆Q, ∆U and ∆W are zero, positive and negative.


Do all thermocouples have a neutral temperature?


A plate of area 10 cm2 is to be electroplated with copper (density 9000 kg m−3) to a thickness of 10 micrometres on both sides, using a cell of 12 V. Calculate the energy spent by the cell in the process of deposition. If this energy is used to heat 100 g of water, calculate the rise in the temperature of the water. ECE of copper = 3 × 10−7 kg C−1and specific heat capacity of water = 4200 J kg−1.


Two cells of emfs approximately 5 V and 10 V are to be accurately compared using a potentiometer of length 400 cm.


The internal resistance of a cell is the resistance of ______


A cell of emf E and internal resistance r is connected across an external resistance R. Plot a graph showing the variation of P.D. across R, versus R.


A cell of emf E is connected across an external resistance R. When current 'I' is drawn from the cell, the potential difference across the electrodes of the cell drops to V. The internal resistance 'r' of the cell is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×