मराठी

If the points A(−1, −4), B(b, c) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c. - Mathematics

Advertisements
Advertisements

प्रश्न

If the points A(−1, −4), B(b, c) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c.

उत्तर

As the given points are collinear, so the area of the triangle formed by them must be 0.

∴ 1/2[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)] = 0
Here, x1= −1 , y1= −4, x2= b, y2= c, x3= 5, y3= −1

∴12[−1(c+1)+b(−1+4)+5(−4−c)]=0

⇒−c−1−b+4b−20−5c=0
⇒−6c+3b−21=0
⇒b−2c=7 ...(1)

Given:

2b+c=4 ...(2)

On solving equation (1) and (2), we get:

b=3 and c=−2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×