मराठी

If two chords AB and CD of a circle AYDZBWCX intersect at right angles (see figure), prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle. - Mathematics

Advertisements
Advertisements

प्रश्न

If two chords AB and CD of a circle AYDZBWCX intersect at right angles (see figure), prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle.

आकृती
बेरीज

उत्तर

Given: In a circle AYDZBWCX, two chords AB and CD intersect at right angles.

To prove: arc CXA + arc DZB = arc AYD + arc BWC = Semi-circle.

Construction: Draw a diameter EF parallel to CD having centre M.

Proof: Since, CD || EF

arc EC = arc PD  ...(i)

arc ECXA = arc EWB  [Symmetrical about diameter of a circle]

arc AF = arc BF  ...(ii)

We know that, ar ECXAYDF = Semi-circle

arc EA + arc AF = Semi-circle

⇒ arc EC + arc CXA = arc FB = Semi-circle  ...[From equation (ii)]

⇒ arc DF + arc CXA + arc FB = Semi-circle  ...[From equation (i)]

⇒ arc DF + arc FB + arc CXA = Semi-circle

⇒ arc DZB + arc C × A = Semi-circle

We know that, circle divides itself in two semi-circles, therefore the remaining portion of the circle is also equal to the semi-circle.

∴ arc AYD + arc BWC = Semi-circle

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Circles - Exercise 10.4 [पृष्ठ १०६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 10 Circles
Exercise 10.4 | Q 6. | पृष्ठ १०६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×