मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In the Arrangement Shown in the Figure, Y = 1.0 Mm, D = 0.24 Mm and D = 1.2 M. the Work Function of the Material of the Emitter is 2.2 Ev. Find the Stopping Potential - Physics

Advertisements
Advertisements

प्रश्न

In the arrangement shown in the figure, y = 1.0 mm, d = 0.24 mm and D = 1.2 m. The work function of the material of the emitter is 2.2 eV. Find the stopping potential V needed to stop the photocurrent.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

बेरीज

उत्तर

Given :-

Fringe width, y = 1 mm `xx` 2  = 2 mm

Work function, W0 = 2.2 eV

D = 1.2 m

d = 0.24 mm

Fringe width,

`y = (lambdaD)/d`,

where  `lambda` = wavelength of light

`therefore lambda = (2 xx 10^-3 xx 0.24 xx 10^-3)/1.2`

`= 4 xx 10^-7  "m"`

Energy ,  `E = (hc)/lambda`

`= (4.14 xx 10^-15 xx 3 xx 10^8)/(4 xx 10^-7)`

= 3.105  `"eV"`

From Einstein's photoelectric equation,

`eV_0 = E - W_0`

where V0 is the stopping potential and e is charge of electron . 

`therefore eV_0 = 3.105 - 2.2 = 0.905  "eV"`

`V_0 = 0.905/(1.6 xx 10^-19) xx 1.6 xx 10^-19 V`

= 0.905 V

shaalaa.com
Photoelectric Effect and Wave Theory of Light
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 29 | पृष्ठ ३६६

संबंधित प्रश्‍न

Light of frequency 7.21 × 1014 Hz is incident on a metal surface. Electrons with a maximum speed of 6.0 × 105 m/s are ejected from the surface. What is the threshold frequency for photoemission of electrons?


(a) A monoenergetic electron beam with electron speed of 5.20 × 106 m s−1 is subject to a magnetic field of 1.30 × 10−4 T normal to the beam velocity. What is the a radius of the circle traced by the beam, given e/m for electron equals 1.76 × 1011 C kg−1?

(b) Is the formula you employ in (a) valid for calculating the radius of the path of a 20 MeV electron beam? If not, in what way is it modified?


 Is the formula you employ in (a) valid for calculating radius of the path of a 20 MeV electron beam? If not, in what way is it modified?


What is so special about the combination e/m? Why do we not simply talk of e and m separately?


Visible light has wavelengths in the range of 400 nm to 780 nm. Calculate the range of energy of the photons of visible light.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A photographic film is coated with a silver bromide layer. When light falls on this film, silver bromide molecules dissociate and the film records the light there. A minimum of 0.6 eV is needed to dissociate a silver bromide molecule. Find the maximum wavelength of light that can be recorded by the film.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A horizontal cesium plate (φ = 1.9 eV) is moved vertically downward at a constant speed v in a room full of radiation of wavelength 250 nm and above. What should be the minimum value of v so that the vertically-upward component of velocity is non-positive for each photoelectron?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Plot a graph to show the variation of stopping potential with frequency of incident radiation in relation to photoelectric effect.


Work function of aluminium is 4.2 eV. If two photons each of energy 2.5 eV are incident on its surface, will  the emission of electrons take place? Justify your answer. 


Answer the following question.
Why is the wave theory of electromagnetic radiation not able to explain the photoelectric effect? How does a photon picture resolve this problem?


In Photoelectric effect ______.


In the experimental set up for studying photoelectric effect, if keeping the frequency of the incident radiation and the accelerating potential fixed, the intensity of light is varied, then ______.


For a given frequency of light and a positive plate potential in the set up below, If the intensity of light is increased then ______.


Cathode rays can be deflected by


In photoelectric effect, the photoelectric current


An increase in the intensity of the radiation causing photo-electric emission from a surface does not affect the maximum K.E. of the photoelectrons. Explain.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×