मराठी

In Fig. Abcd is a Cyclic Quadrilateral. a Circle Passing Through a and B Meets Ad and Bc in the Points E and F Respectively. Prove that Ef || Dc - Mathematics

Advertisements
Advertisements

प्रश्न

In Fig. ABCD is a cyclic quadrilateral. A circle passing through A and B meets AD and BC in the points E and F respectively. Prove that EF || DC.

बेरीज

उत्तर

In order to prove that EF || DC. It is sufficient to show that ∠2 = ∠3.
Since ABCD is a cyclic quadrilateral.
∴ ∠1 + ∠3 = 180°               ...(i)

Similarly, in the cyclic quadrilateral ABFE, we have
∠1 + ∠2 = 180°                  ...(ii)
 From (i) and (ii), we get 
⇒ ∠1 + ∠3 = ∠1 + ∠2
⇒ ∠3 = ∠2
Hence, EF || DC.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 23

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×