मराठी

Prove that the Quadrilateral Formed by Angle Bisectors of a Cyclic Quadrilateral Abcd is Also Cyclic. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the quadrilateral formed by angle bisectors of a cyclic quadrilateral ABCD is also cyclic.

बेरीज

उत्तर

Given: In cyclic ABCD the bisectors formed a quadrilateral ABCD.

To prove: PQRS is a cyclic quadrilateral.

Proof: In cyclic quadrilateral ABCD, AR and BS be the bisectors of ∠A and ∠B.
So, ∠ 1 = ∠ A/2 and ∠ 2 = ∠ B/2

In Δ ASB, ∠ RSP is the exterior angle
So ∠ RSP = ∠1 + ∠2
∠ RSP = `"∠A"/2 + "∠B"/2`                        ....(i)
Similarly, ∠ PQR = `"∠C"/2 + "∠D"/2`       ....(ii)

Adding (i) and (ii),
∠ PQR + ∠ RSP = `1/2`(∠A + ∠B + ∠C + ∠D)
 = `1/2` x 360° = 180°

∠ PQR + ∠ RSP = 180°


But these are the opposite angles of quadrilateral PQRS 
Hence PQRS is a cyclic quadrilateral.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 35

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×