मराठी

Two Equal Chords Ab and Cd of a Circle with Centre O, When Produced Meet at a Point E, as Shown in Fig. Prove that Be = De and Ae = Ce. - Mathematics

Advertisements
Advertisements

प्रश्न

Two equal chords AB and CD of a circle with center O, when produced meet at a point E, as shown in Fig. Prove that BE = DE and AE = CE.

बेरीज

उत्तर

Given: Two equal chords AB and CD intersecting at a point E.

To prove: BE = BE and AE = CE

Construction: Join OE. Draw OL ⊥ AB and OM ⊥ CD'

Proof: We have 
AB = CD
⇒ OL = OM   ....(∵Equal chords are equidistant from the centre)

In triangles OLE and OME, we have
OL = OM
∠OLE = ∠OME    ...(Each equal to 90°)
and OE = OE       ...(Common)
So, by SAS-Criterion of congruences
Δ OLE ≅ ΔOME

⇒ LE = ME          ....(i)
Now, AB = CD
⇒ `1/2"AB" = 1/2"CD"` ⇒ BL = DM    ...(ii)
Subtracting (ii) from (i), we get
LE - BL = ME - DM
⇒ BE = DE
Again, AB = CD and BE = DE
⇒ AB + BE = CD + DE
⇒ AE = CE
Hence, BE = DE and AE = CE.
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 1 | Q 34

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×