मराठी

In Fig.. O is the Center of the Circle and Bcd is Tangent to It at C. Prove that ∠Bac + ∠Acd = 90° - Mathematics

Advertisements
Advertisements

प्रश्न

In fig.. O is the center of the circle and BCD is tangent to it at C. Prove that ∠BAC +
∠ACD = 90°

उत्तर

Given

O is center of circle

BCD is tangent.

Required to prove: ∠BAC + ∠ACD = 90°

Proof: OA = OC [radius]

In ΔOAC, angles opposite to equal sides are equal.

∠OAC = ∠OCA …. (i)

∠OCD = 90° [tangent is radius are perpendicular at point of contact]

∠ACD + ∠OCA = 90°

∠ACD + ∠OAC = 90° [∵ ∠OAC = ∠BAC]

∠ACD + ∠BAC = 90° ⟶ Hence proved

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Circles - Exercise 8 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 8 Circles
Exercise 8 | Q 4 | पृष्ठ ३५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×