मराठी

In the given figure, PS is the bisector of ∠QPR of ΔPQR. Prove that (QS)/(SR) = (PQ)/(PR) - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, PS is the bisector of ∠QPR of ΔPQR. Prove that `(QS)/(SR) = (PQ)/(PR)`

उत्तर

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.

Given that, PS is the angle bisector of ∠QPR.

∠QPS = ∠SPR … (1)

By construction,

∠SPR = ∠PRT (As PS || TR) … (2)

∠QPS = ∠QTR (As PS || TR) … (3)

Using these equations, we obtain

∠PRT = ∠QTR

∴ PT = PR

By construction,

PS || TR

By using basic proportionality theorem for ΔQTR,

`(QS)/(SR) = (QP)/(PT)`

`=>(QS)/(SR) = (PQ)/(PR) (∵ PT = PR)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Triangles - Exercise 6.6 [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 6 Triangles
Exercise 6.6 | Q 1 | पृष्ठ १५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In a ΔABC, D and E are points on the sides AB and AC respectively. For  the following case show that DE || BC

AB = 2cm, AD = 8cm, AE = 12 cm and AC = l8cm.


In a ΔABC, D and E are points on the sides AB and AC respectively. For  the following case show that DE || BC

AD = 5.7 cm, BD = 9.5 cm, AE = 3.3 cm and EC = 5.5 cm.


In three line segments OA, OB, and OC, points L, M, N respectively are so chosen that LM || AB and MN || BC but neither of L, M, N nor of A, B, C are collinear. Show that LN ||AC.


D and E are points on the sides AB and AC respectively of a ΔABC such that DE║BC. Find the value of x, when

AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm. 


ΔABC is an isosceles triangle with AB = AC = 13cm. The length of altitude from A on BC is 5cm. Find BC. 


Find the length of a diagonal of a rectangle whose adjacent sides are 30cm and 16cm. 


In the given figure, ∠ACB  90° CD ⊥ AB Prove that `(BC^2)/(AC^2)=(BD)/(AD)`  

 


A line is parallel to one side of triangle which intersects remaining two sides in two distinct points then that line divides sides in same proportion.

Given: In ΔABC line l || side BC and line l intersect side AB in P and side AC in Q.

To prove: `"AP"/"PB" = "AQ"/"QC"`

Construction: Draw CP and BQ

Proof: ΔAPQ and ΔPQB have equal height.

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = (["______"])/"PB"`   .....(i)[areas in proportion of base]

`("A"(Δ"APQ"))/("A"(Δ"PQC")) = (["______"])/"QC"`  .......(ii)[areas in proportion of base]

ΔPQC and ΔPQB have [______] is common base.

Seg PQ || Seg BC, hence height of ΔAPQ and ΔPQB.

A(ΔPQC) = A(Δ______)    ......(iii)

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = ("A"(Δ "______"))/("A"(Δ "______"))`   ......[(i), (ii), and (iii)]

`"AP"/"PB" = "AQ"/"QC"`   .......[(i) and (ii)]


ΔABC ~ ΔDEF. If AB = 4 cm, BC = 3.5 cm, CA = 2.5 cm and DF = 7.5 cm, then the perimeter of ΔDEF is ______.


In the given figure ΔABC ~ ΔPQR, PM is median of ΔPQR. If ar ΔABC = 289 cm², BC = 17 cm, MR = 6.5 cm then the area of ΔPQM is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×