मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

  1. What is the length of each tangent segment?
  2. What is the measure of ∠MRO?
  3. What is the measure of ∠MRN?

बेरीज

उत्तर

(1) It is given that seg RM and seg RN are tangent segments touching the circle at M and N, respectively. 

∴ ∠OMR = ∠ONR = 90º   ...(Tangent at any point of a circle is perpendicular to the radius throught the point of contact)


OM = 5 cm and OR = 10 cm

In right ∆OMR,

OR2 = OM2 + MR2

MR = `sqrt("OR"^2 - "OM"^2`

MR = `sqrt(10^2 - 5^2)`

MR = `sqrt(100 - 25)`

MR = `sqrt75`

MR = 5`sqrt3` cm

Tangent segments drawn from an external point to a circle are congruent.

∴ MR = NR = 5`sqrt3`

(2) In right ∆OMR,

∠MRO = `"OM"/"MR"`

∠MRO = `(5 "cm")/(5sqrt3cm)`

= `1/sqrt3`

∠MRO = tan 30°

∠MRO = 30°

Thus, the measure of ∠MRO is 30º.

Similarly, ∠NRO = 30º

(3) ∠MRN = ∠MRO + ∠NRO = 30º + 30º = 60º

Thus, the measure of ∠MRN is 60º.

shaalaa.com
Tangent Segment Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Circle - Practice Set 3.1 [पृष्ठ ५५]

संबंधित प्रश्‍न

In the given figure, the circles with centres A and B touch each other at E. Line l is a common tangent which touches the circles at C and D respectively. Find the length of seg CD if the radii of the circles are 4 cm, 6 cm. 


Four alternative answers for the following question is given. Choose the correct alternative.
 Length of a tangent segment drawn from a point which is at a distance 12.5 cm from the centre of a circle is 12 cm, find the diameter of the circle.


Four alternative answers for the following question is given. Choose the correct alternative.

 Seg XZ is a diameter of a circle. Point Y lies in its interior. How many of the following statements are true ? (i) It is not possible that ∠XYZ is an acute angle. (ii) ∠XYZ can’t be a right angle. (iii) ∠XYZ is an obtuse angle. (iv) Can’t make a definite statement for measure of ∠XYZ.


In the given figure, M is the centre of the circle and seg KL is a tangent segment.
If MK = 12, KL = \[6\sqrt{3}\] then find –
(1) Radius of the circle.
(2) Measures of ∠K and ∠M.


In the given figure, O is the centre of the circle. Seg AB, seg AC are tangent segments. Radius of the circle is r and l(AB) = r, Prove that ▢ABOC is a square. 

Proof: Draw segment OB and OC.

l(AB) = r      ......[Given] (I)

AB = AC    ......[`square`] (II)

But OB = OC = r    ......[`square`] (III)

From (i), (ii) and (iii)

AB = `square` = OB = OC = r

∴ Quadrilateral ABOC is `square`

Similarly, ∠OBA = `square`      ......[Tangent Theorem]

If one angle of `square` is right angle, then it is a square.

∴ Quadrilateral ABOC is a square.


The perpendicular height of a cone is 12 cm and its slant height is 13 cm. Find the radius of the base of the cone. 


Prove the following theorem:

Tangent segments drawn from an external point to the circle are congruent.


Segment DP and segment DQ are tangent segments to the circle with center A. If DP = 7 cm. So find the length of the segment DQ.


The chords corresponding to congruent arcs of a circle are congruent. Prove the theorem by completing following activity.

Given: In a circle with centre B 

arc APC ≅ arc DQE

To Prove: Chord AC ≅ chord DE

Proof: In ΔABC and ΔDBE,

side AB ≅ side DB    ......`square`

side BC ≅ side `square`    .....`square`

∠ABC ≅ ∠DBE    ......[Measure of congruent arcs]

∆ABC ≅ ∆DBE    ......`square`


Length of a tangent segment drawn from a point which is at a distance 15 cm from the centre of a circle is 12 cm, find the diameter of the circle?


In the adjoining figure, O is the center of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N. If (OR) = 10 cm and radius of the circle = 5 cm, then

(i) What is the length of each tangent segment?

(ii) What is the measure of ∠MRO?

(iii) What is the measure of ∠MRN?


In the adjoining figure circle with Centre, Q touches the sides of ∠MPN at M and N. If ∠MPN = 40°, find measure of ∠MQN.


The figure ΔABC is an isosceles triangle with a perimeter of 44 cm. The sides AB and BC are congruent and the length of the base AC is 12 cm. If a circle touches all three sides as shown in the figure, then find the length of the tangent segment drawn to the circle from point B.


In a parallelogram ABCD, ∠B = 105°. Determine the measure of ∠A and ∠D.


In the following figure, XY = 10 cm and LT = 4 cm. Find the length of XT.



A circle touches side BC at point P of the ΔABC, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that : AM = `1/2` (Perimeter of ΔABC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×