मराठी

In the Figure, Give Below, 2ad = Ab, P is Mid-point of Ab Q is Mid-point of Dr and Pr Bs. Prove That: Aq Bs Ds = 3 Rs - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure, give below, 2AD = AB, P is mid-point of AB, Q is mid-point of DR and PR // BS. Prove that:
(i) AQ // BS
(ii) DS = 3 Rs.

बेरीज

उत्तर

Given that AD = AP = PB as 2AD = AB and p is the midpoint of AB

(i) From triangle DPR, A and Q are the mid-point of DP and DR.
Therefore AQ || PR
Since PR || BS ,hence AQ || BS

(ii) From triangle ABC, P is the midpoint and PR || BS
Therefore R is the mid-point of BC

From ΔBRS and ΔQRC
∠BRS = ∠QRC
BR = RC
∠RBS + ∠RCQ
∴ ΔBRS ≅ ΔQRC
∴ QR =RS
DS = DQ + QR + RS = QR + QR + RS = 3RS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 2 | पृष्ठ १५३

संबंधित प्रश्‍न

In a ΔABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC
intersects FE at Q. Prove that AQ = QP.


Fill in the blank to make the following statement correct:

The triangle formed by joining the mid-points of the sides of a right triangle is            


Fill in the blank to make the following statement correct:

The figure formed by joining the mid-points of consecutive sides of a quadrilateral is           


In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,

  1. SL = LR
  2. LN = `1/2`SQ


The following figure shows a trapezium ABCD in which AB // DC. P is the mid-point of AD and PR // AB. Prove that:

PR = `[1]/[2]` ( AB + CD)


In triangle ABC, the medians BP and CQ are produced up to points M and N respectively such that BP = PM and CQ = QN. Prove that:

  1. M, A, and N are collinear.
  2. A is the mid-point of MN.

In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.


ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: 2EF = BD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×