मराठी

In a δAbc, E and F Are the Mid-points of Ac and Ab Respectively. the Altitude Ap to Bc Intersects Fe at Q. Prove that Aq = Qp. - Mathematics

Advertisements
Advertisements

प्रश्न

In a ΔABC, E and F are the mid-points of AC and AB respectively. The altitude AP to BC
intersects FE at Q. Prove that AQ = QP.

उत्तर

In ΔABC

E and F are midpoints of AB and  AC

∴ EF || FE, `1/2` BC =FE                [  ∴ By mid-point theorem]

In ΔABP

F is the midpoint of AB and   FQ || BP         [ ∵ EF || BC ]

∴ Q is the midpoint of AP                     [By converse of midpoint theorem]

Hence, AQ = QP

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 13 Quadrilaterals
Exercise 13.4 | Q 5 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is a diagonal. Show that:

  1. SR || AC and SR = `1/2AC`
  2. PQ = SR
  3. PQRS is a parallelogram.


In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.

[Hint: DN || QM]


In triangle ABC, P is the mid-point of side BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R.
Prove that : (i) AP = 2AR
                   (ii) BC = 4QR


In ΔABC, D is the mid-point of AB and E is the mid-point of BC.

Calculate:
(i) DE, if AC = 8.6 cm
(ii) ∠DEB, if ∠ACB = 72°


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find ∠FDB if ∠ACB = 115°.


The diagonals of a quadrilateral intersect each other at right angle. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is a rectangle.


In a parallelogram ABCD, M is the mid-point AC. X and Y are the points on AB and DC respectively such that AX = CY. Prove that:
(i) Triangle AXM is congruent to triangle CYM, and

(ii) XMY is a straight line.


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: BC = 4QR


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC


In ΔABC, D and E are the midpoints of the sides AB and AC respectively. F is any point on the side BC. If DE intersects AF at P show that DP = PE.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×