मराठी

In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that: ACADBCDMBCAC2=AD2+BC.DM+(BC2)2 - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

`"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`

सिद्धांत

उत्तर

Applying Pythagoras theorem in ΔAMD, we obtain

AM2 + MD2 = AD2 … (1)

Applying Pythagoras theorem in ΔAMC, we obtain

AM2 + MC2 = AC2

AM2 + (MD + DC)2 = AC2

(AM2 + MD2) + DC2 + 2MD.DC = AC2

AD2 + DC2 + 2MD.DC = AC2 [Using equation (1)]

Using the result, DC = `"BC"/2`, we obtain

`"AD"^2+(("BC")/2)^2 + 2"MD".(("BC")/2) = "AC"^2`

`"AD"^2+(("BC")/2)^2 + "MC" xx "BC" = "AC"^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×