मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Is Work Done by a Battery Always Equal to the Thermal Energy Developed in Electrical Circuit? What Happens If a Capacitor is Connected in the Circuit? - Physics

Advertisements
Advertisements

प्रश्न

Is work done by a battery always equal to the thermal energy developed in electrical circuit? What happens if a capacitor is connected in the circuit?

टीपा लिहा

उत्तर

No, the work done by a battery is not always equal to the thermal energy developed in the electrical circuit. In case of a non-ideal battery, the work done by the battery is the sum of the thermal energy developed in the electric circuit and the thermal energy developed in the internal resistance of the battery. In case of a capacitor, the work done by the battery is equal to C V2. An amount of energy equal to `1/2` C V2 is stored in it when it is fully charged, which is a form of electrical energy and not a form of thermal energy. During the charging of the capacitor, `1/2` C V2 of energy is lost in the form of heat and electromagnetic radiation.

shaalaa.com
Temperature Dependence of Resistance
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - Short Answers [पृष्ठ १९६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
Short Answers | Q 11 | पृष्ठ १९६

संबंधित प्रश्‍न

At room temperature (27.0°C) the resistance of a heating element is 100 Ω. What is the temperature of the element if the resistance is found to be 117 Ω, given that the temperature coefficient of the material of the resistor is 1.70 × 10−4 °C−1.


A silver wire has a resistance of 2.1 Ω at 27.5°C, and a resistance of 2.7 Ω at 100°C. Determine the temperature coefficient of resistivity of silver.


A heating element using nichrome connected to a 230 V supply draws an initial current of 3.2 A which settles after a few seconds to a steady value of 2.8 A. What is the steady temperature of the heating element if the room temperature is 27.0°C? The temperature coefficient of resistance of nichrome averaged over the temperature range involved is 1.70 × 10−4 °C−1.


The order of coloured rings in a carbon resistor is red, yellow, blue and silver. The resistance of the
carbon resistor is:

a) 24 x 106 Ω ± 5%

b) 24 x 106 Ω ± 10%

c) 34 x 104 Ω ± 10%

d) 26 x 104 Ω ± 5%


Show variation of resistivity of Si with temperature in a graph ?


The thermal energy developed in a current-carrying resistor is given by U = i2 Rt and also by U = Vit. Should we say that U is proportional to i2 or i?


A non-ideal battery is connected to a resistor. Is work done by the battery equal to the thermal energy developed in the resistor? Will your answer change if the battery is ideal?


Sometimes it is said that "heat is developed" in a resistance when there is an electric current in it. Recall that heat is defined as the energy being transferred due to temperature difference. Is the statement in quotes technically correct?


As the temperature of a metallic resistor is increased, the product of its resistivity and conductivity ____________ .


The resistance of an iron wire and a copper wire at 20°C are 3.9 Ω and 4.1 Ω, respectively. At what temperature will the resistance be equal? Temperature coefficient of resistivity for iron is 5.0 × 10–3 K–1 and for copper, it  is 4.0 × 10–3 K–1. Neglect any thermal expansion.


Is inversion temperature always double the neutral temperature? Does the unit of temperature have an effect in deciding this question?


An electric kettle used to prepare tea, takes 2 minutes to boil 4 cups of water (1 cup contains 200 cc of water) if the room temperature is 25°C. (a) If the cost of power consumption is Re 1.00 per unit (1 unit = 1000 watt-hour), calculate the cost of boiling 4 cups of water. (b) What will be the corresponding cost if the room temperature drops to 5°C?


Find the neutral temperature and inversion temperature of a copper-iron thermocouple if the reference junction is kept at 0°C. Use the data given in the following table.

Metal with lead (Pb)

a

`mu V"/"^oC`

b

`muV"/("^oC)`

Aluminium -0.47 0.003
Bismuth -43.7 -0.47
Copper 2.76 0.012
Gold 2.90 0.0093
Iron 16.6 -0.030
Nickel 19.1 -0.030
Platinum -1.79 -0.035
Silver 2.50 0.012
Steel 10.8 -0.016

A variable resistor R is connected across a cell of emf ε and internal resistance r as shown in the figure. Draw a plot showing the variation of
(i) Terminal voltage V and
(ii) the current I, as a function of R.


An electrical cable of copper has just one wire of radius 9 mm. Its resistance is 5 ohm. This single copper wire of the cable is replaced by 6 different well insulated copper wires each of radius 3 mm. The total resistance of the cable will now be equal to ______.


The example of non-ohmic resistance is ______.

The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×