मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

As the Temperature of a Metallic Resistor is Increased, the Product of Its Resistivity and Conductivity - Physics

Advertisements
Advertisements

प्रश्न

As the temperature of a metallic resistor is increased, the product of its resistivity and conductivity ____________ .

पर्याय

  • increases

  • decreases

  • remains constant

  • may increase or  decrease

MCQ
रिकाम्या जागा भरा

उत्तर

As the temperature of a metallic resistor is increased, the product of its resistivity and conductivity remains constant.

Resistivity = `1/"conductivity"`

The product of resistivity and conductivity is equal to a constant.

shaalaa.com
Temperature Dependence of Resistance
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electric Current in Conductors - MCQ [पृष्ठ १९६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 10 Electric Current in Conductors
MCQ | Q 4 | पृष्ठ १९६

संबंधित प्रश्‍न

At room temperature (27.0°C) the resistance of a heating element is 100 Ω. What is the temperature of the element if the resistance is found to be 117 Ω, given that the temperature coefficient of the material of the resistor is 1.70 × 10−4 °C−1.


A silver wire has a resistance of 2.1 Ω at 27.5°C, and a resistance of 2.7 Ω at 100°C. Determine the temperature coefficient of resistivity of silver.


The order of coloured rings in a carbon resistor is red, yellow, blue and silver. The resistance of the
carbon resistor is:

a) 24 x 106 Ω ± 5%

b) 24 x 106 Ω ± 10%

c) 34 x 104 Ω ± 10%

d) 26 x 104 Ω ± 5%


The thermal energy developed in a current-carrying resistor is given by U = i2 Rt and also by U = Vit. Should we say that U is proportional to i2 or i?


Consider a circuit containing an ideal battery connected to a resistor. Do "work done by the battery" and "the thermal energy developed" represent two names of the same physical quantity?


Is work done by a battery always equal to the thermal energy developed in electrical circuit? What happens if a capacitor is connected in the circuit?


Sometimes it is said that "heat is developed" in a resistance when there is an electric current in it. Recall that heat is defined as the energy being transferred due to temperature difference. Is the statement in quotes technically correct?


Two resistors R and 2R are connected in series in an electric circuit. The thermal energy developed in R and 2R are in the ratio ______________ .


Is neutral temperature always the arithmetic mean of the inversion temperature and the temperature of the cold junction? Does the unit of temperature have an effect in deciding this question?


Consider the following statements regarding a thermocouple.
(A) The neutral temperature does not depend on the temperature of the cold junction.
(B) The inversion temperature does not depend on the temperature of the cold junction.


The constants a and b for the pair silver-lead are 2.50 μV°C−1 and 0.012μV°C−2, respectively. For a silver-lead thermocouple with colder junction at 0°C, ______________ .

(a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there will not be any thermo-emf even if the junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if the junctions are kept at different temperatures


The 2.0 Ω resistor shown in the figure is dipped into a calorimeter containing water. The heat capacity of the calorimeter together with water is 2000 J K−1. (a) If the circuit is active for 15 minutes, what would be the rise in the temperature of the water? (b) Suppose the 6.0 Ω resistor gets burnt. What would be the rise in the temperature of the water in the next 15 minutes?


A metallic wire has a resistance of 3.0 Ω at 0°C and 4.8 Ω at 150°C. Find the temperature coefficient of resistance of its material.


A variable resistor R is connected across a cell of emf ε and internal resistance r as shown in the figure. Draw a plot showing the variation of
(i) Terminal voltage V and
(ii) the current I, as a function of R.


By increasing the temperature, the specific resistance of a conductor and a semiconductor -


The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


The temperature (T) dependence of resistivity of materials A and material B is represented by fig (i) and fig (ii) respectively. Identify material A and material B.


fig. (i)

fig. (ii)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×