Advertisements
Advertisements
प्रश्न
जर `[ax + by]/( x + y) = ( bx + az )/(x + z) = (ay + bz)/[y + z]` आणि x + y + z ≠ 0 तर प्रत्येक गुणोत्तर `[a + b]/2` आहे, हे सिद्ध करा.
उत्तर
`[ax + by]/( x + y) = ( bx + az )/( x + z )=( ay + bz )/[ y + z ] ` = k
k = `[( ax + by ) + ( bx + az ) + ( ay + bz )]/[( x +y ) + ( x + z ) + ( y + z )]` ...(समान गुणोत्तराच्या सिद्धांतानुसार)
= `[ax + ay + az+bx+by+bz]/ [ 2x + 2y + 2z ]`
= `(a ( x + y + z)+b(x+y+z))/[2( x + y + z )]`
= `(( x + y + z )(a+b))/(2(x + y + z ))`
= `(a + b)/2` ...[x + y + z ≠ 0]
APPEARS IN
संबंधित प्रश्न
पुढील विधानातील रिकाम्या जागा भरा.
`x/7 = y/3 = (3x + 5y)/("_____") = (7x -9y)/("_____")`
पुढील विधानातील रिकाम्या जागा भरा.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
जर a(y + z) = b(z + x) = c(x + y) आणि a, b, c पैकी कोणत्याही दोन संख्या समान नाहीत तर `(y − z)/[a (b − c)] = (z − x)/[b (c − a)] = (x − y)/[c( a − b)]` हे दाखवा.
जर `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` आणि x + y + z ≠ 0 तर प्रत्येक गुणोत्तराची किंमत 1 आहे असे दाखवा.
जर `(y + z)/a = (z + x )/b = (x + y)/c` तर `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)` हे दाखवा.
जर `{3x - 5y}/(5z + 3y) = (x + 5z)/(y - 5x) = (y - z)/(x - z)` तर प्रत्येक गुणोत्तर `x/y` एवढे आहे हे दाखवा.
सोडवा.
`[16x^2 - 20x +9]/[8x^2 + 12x + 21] = (4x - 5)/(2x + 3)`
सोडवा.
`(5y^2 + 40y - 12)/(5y + 10y^2 - 4) = (y + 8)/(1 + 2y)`
जर `[2x - 3y]/[3z + y] = [z - y]/[z - x] = [x + 3z]/[2y - 3x]` तर प्रत्येक गुणोत्तर `y/x` आहे, हे सिद्ध करा.
जर `[by + cz ]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]` तर `x/a= y/b = z/c` हे सिद्ध करा.