मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (हिंदी माध्यम) इयत्ता १० वी

किसी अंकगणितीय श्रृंखला का 19 वाँ पद 52 तथा 38 वाँ पद 148 हो, तो उस श्रृंखला के प्रथम 56 पदों का योगफल ज्ञात कीजिए। - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

किसी अंकगणितीय श्रृंखला का 19 वाँ पद 52 तथा 38 वाँ पद 148 हो, तो उस श्रृंखला के प्रथम 56 पदों का योगफल ज्ञात कीजिए।

बेरीज

उत्तर

माना, इस श्रृंखला का पहला पद (a) तथा सामान्य अंतर (d) है।

इस श्रृंखला का 19 वाँ पद 52 है।

tn = a + (n − 1)d .............(सूत्र)

t19 = a + (19 − 1) × d

∴ 52 = a + 18 × d .......(मान प्रतिस्थापित करने पर)

∴ 52 = a + 18d

∴ a + 18d = 52 ..........(I)

इस श्रृंखला का 38 वाँ पद 128 है। ....(दिया गया है)

tn = a + (n − 1)d .............(सूत्र)

t38 = a + (38 − 1) × d

∴ 128 = a + 37d

∴ a + 37d = 128 .......(II)

समीकरण (I) तथा (II) को जोड़ने पर,

a + 18d = 52 .....(I)
a + 37d = 128 .......(II)
2a + 55d = 180 ......(III)

अब,

Sn = `"n"/2 [2"a" + ("n" - 1)"d"]` .......(सूत्र)

∴ S56 = `56/2 [2"a" + (56 - 1)"d"]`

= 28 [2a + 55d]

= 28 × 180 ......[(III) से]

∴ S56 = 5040

∴ पहले 56 पदों का योगफल 5040 है।

shaalaa.com
अंकगणितीय शृंखला के प्रथम n पदों का योगफल (Sum of First n Terms of an A. P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: अंकगणितीय श्रृंखला - प्रश्नसंग्रह 3.3 [पृष्ठ ७२]

APPEARS IN

बालभारती Algebra (Mathematics 1) [Hindi] 10 Standard SSC Maharashtra State Board
पाठ 3 अंकगणितीय श्रृंखला
प्रश्नसंग्रह 3.3 | Q (4) | पृष्ठ ७२

संबंधित प्रश्‍न

किसी अंकगणितीय श्रृंखला का प्रथम पद 6 तथा सामान्य अंतर 3 हो तो S27 ज्ञात कीजिए।

a = 6, d = 3, S27 = ?

`"S"_"n" = "n"/2 [square + ("n" - 1)"d"]`

`"S"_27 = 27/2 [12 + (27 - 1)square]`

`= 27/2 xx square`

= 27 × 45

= `square`


प्रथम 123 सम प्राकृत संख्याओं का योगफल ज्ञात कीजिए।


1 और 350 के बीच की सभी संख्याओं का योगफल ज्ञात कीजिए।


किसी अंकगणितीय श्रृंखला के प्रथम 55 पदों का योगफल 3300 हो, तो उस श्रृंखला का 28 वाँ पद ज्ञात कीजिए।


किसी अंकगणितीय श्रृंखला के तीन क्रमिक पदों का योगफल 27 तथा उनका गुणनफल 504 हो, तो वे पद ज्ञात कीजिए।
(तीन क्रमिक पद a − d, a, a + d लीजिए।)


किसी अंकगणितीय श्रृंखला के चार क्रमिक पदों का योगफल 12 है तथा उन चार क्रमिक पदों में से तृतीय और चतुर्थ पद का योगफल 14 हो, तो वे चार पद ज्ञात कीजिए।
(चार क्रमिक पद a − d, a, a + d, a + 2d लीजिए।)


किसी अंकगणितीय श्रृंखला का 9 वाँ पद शून्य हो, तो 29 वाँ पद 19 वें पद का दुगुना होता है, सिद्ध कीजिए।


प्रथम ‘n’ सम प्राकृत संख्याओं का योगफल ज्ञात करो।


यदि अंकगणितीय श्रृंखला का पहला पद p, दूसरा पद q तथा अंतिम पद r हो, तो उस श्रृंखला के सभी पदों का जोड़ `("q" + "r" - 2"p") xx ("p" + "r")/(2("q"-"p"))` इतना है यह दिखाइये।


कविता ने किसी महिला बचत गट में पहले दिन 20 रुपये, दूसरे दिन 40 रुपये तथा तीसरे दिन 60 रुपये इस प्रकार पैसे जमा किए, तो उसकी फरवरी-2020 महीने की कुल बचत कितनी होगी ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×