मराठी

किसी लंबे हॉल की छत 25 m ऊँची है। वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें 40 ms-1 की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए? - Physics (भौतिक विज्ञान)

Advertisements
Advertisements

प्रश्न

किसी लंबे हॉल की छत 25 m ऊँची है। वह अधिकतम क्षैतिज दूरी कितनी होगी जिसमें 40 ms-1 की चाल से फेंकी गई कोई गेंद छत से टकराए बिना गुजर जाए?

संख्यात्मक

उत्तर

यहाँ प्रक्षेप्य वेग u = 40 मी/से, महत्तम ऊँचाई HM = 25 मी

∴ सूत्र `"H"_"M" = ("u"^2. "sin"^2theta_0)/(2"g")` से

`25 = [((40)^2 xx "sin"^2  theta_0)/(2 xx 9.8)]`

∴ `"sin"^2 theta_2 = [(25 xx 2 xx 9.8)/ (40)^2] = 0.30625`

अथवा `"sin"  theta_0 = sqrt0.30625 = 0.5534`

∴ उक्त प्रक्षेप्य वेग तथा प्रक्षेप्य कोण के लिए अधिकतम क्षैतिज दूरी = क्षैतिज परास

R = `("u"^2.  "sin"2  theta_0)/"g"`

= `("u"^2 (2  "sin "theta_0  . "cos"  theta_0))/"g"`

 = `("u"^2  . 2 "sin"  theta_0 xx sqrt (1-"sin"^2 theta_0))/"g"`

= `[((40)^2  xx 2  xx 0.5534 sqrt(1-0.30625))/9.8]` मी

= `[(40^2 xx 2  xx 0.5534  xx  0.8329)/9.8]` मी

= 150.5 मी

shaalaa.com
प्रक्षेप्य गति
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: समतल में गति - अभ्यास [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी Physics [Hindi] Class 11
पाठ 4 समतल में गति
अभ्यास | Q 4.15 | पृष्ठ ८८

संबंधित प्रश्‍न

क्रिकेट का कोई खिलाड़ी किसी गेंद को 100 m की अधिकतम क्षैतिज दूरी तक फेंक सकता है। वह खिलाड़ी उसी गेंद को जमीन से ऊपर कितनी ऊँचाई तक फेंक सकता है?


कोई वायुयान पृथ्वी से 3400 m की ऊंचाई पर उड़ रहा है। यदि पृथ्वी पर किसी अवलोकन बिंदु पर वायुयान की 10.0 s की दूरी की स्थितियाँ 30° का कोण बनाती हैं तो वायुयान की चाल क्या होगी?


कोई गोली क्षैतिज से 30° के कोण पर दागी गई है और वह धरातल पर 3.0 km दूर गिरती है। इसके प्रक्षेप्य के कोण का समायोजन करके क्या 5.0 km दूर स्थित किसी लक्ष्य का भेद किया जा सकता है? गोली की नालमुखी चाल को नियत तथा वायु के प्रतिरोध को नगण्य मानिए।


कोई लड़ाकू जहाज 1.5 km की ऊंचाई पर 720 km/h की चाल से क्षैतिज दिशा में उड़ रहा है और किसी वायुयान भेदी तोप के ठीक ऊपर से गुजरता है। ऊर्ध्वाधर से तोप की नाल का क्या कोण हो जिससे 600 ms-1 की चाल से दागा गया गोला वायुयान पर वार कर सके। वायुयान के चालक को किस न्यूनतम ऊंचाई पर जहाज को उड़ाना चाहिए जिससे गोली लगने से बच सके। (g = 10 ms-2)


सिद्ध कीजिए कि किसी प्रक्षेप्य के x-अक्ष तथा उसके वेग के बीच के कोण को समय के फलन के रूप में निम्न प्रकार से व्यक्त कर सकते हैं-

`theta ("t") = "tan"^-1(("ν"_(0"y") - "gt")/"ν"_"ox")`


सिद्ध कीजिए की मूलबिंदु से फेंके गए प्रक्षेप्य कोण का मान `theta _0 = "tan"^-1((4"h"_"m")/"R")` होगा। यहाँ प्रयुक्त प्रतीकों के अर्थ सामान्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×