मराठी

लंबाई 6 m वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई 4 m है, जबकि उसी समय एक मीनार की छाया की लंबाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

लंबाई 6 m वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई 4 m है, जबकि उसी समय एक मीनार की छाया की लंबाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।

बेरीज

उत्तर १

मान लीजिए AB और CD क्रमशः एक मीनार और एक स्तंभ हैं।

मान लीजिए BE और DF की छाया क्रमशः AB और CD की छाया है।

उसी समय, सूर्य से आने वाली प्रकाश किरणें मीनार और स्तंभ पर एक ही कोण पर पड़ेंगी।

इसलिए, ∠DCF = ∠BAE

और, ∠DFC = ∠BEA

∠CDF = ∠ABE            ...(मीनार और स्तंभ जमीन से लंबवत हैं)

∴ ΔABE ∼ ΔCDF       ...(AAA समरूपता कसौटी)

⇒ `("AB")/("CB") = ("BE")/("DF")`

⇒ `("AB")/(6"m") = 28/4`

⇒ AB = 42 m

इसलिए, मीनार की ऊंचाई 42 मीटर होगी।

shaalaa.com

उत्तर २

(a)

(b)

मान लीजिए AB = 6 cm लम्बा एक स्तम्भ है जिसकी छाया BC की लम्बाई 4 m है एवं ∠ABC = 90° तथा ∠C = x° है। आकृति एवं PQ = h m (मान लीजिए) कि मीनार की छाया QR की लम्बाई 28 m है एवं ∠PQR = 90° तथा ∠R = x° है।

∠C = ∠R = x° (सूर्य का उन्नयन कोण) एवं ∠B = ∠Q = 90°

∆ABC ∼ ∆PQR       ...[AA समरूपता]

⇒ `"AB"/"BC" = "PQ"/"QR"`      ...[समरूप त्रिभुज के प्रगुण]

⇒ `6/4 = "h"/28`

⇒ h = `6/4 xx 28`

⇒ h = 42 m

अत: मीनार की अभीष्ट ऊँचाई = 42 cm है।

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: त्रिभुज - प्रश्नावली 6.3 [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 6 त्रिभुज
प्रश्नावली 6.3 | Q 15. | पृष्ठ १५५

संबंधित प्रश्‍न

बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।


बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

 


आकृति में, ΔABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:

 

ΔAEP ∼ ΔCDP


समांतर चतुर्भुज ABCD की बढ़ाई गई भुजा AD पर स्थित E एक बिंदु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है। दर्शाइए कि ∆ABE ∼ ∆CFB है।


आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि `"BD"/"CD" = "AB"/"AC"` है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

 


त्रिभुजों ABC और DEF में, ∠B = ∠E, ∠F = ∠C तथा AB = 3DE है। तब दोनों त्रिभुज  ______  हैं।


आकृति में, यदि DE || BC है, तो ar(ADE) और ar(DECB) का अनुपात ज्ञात कीजिए। 


दो समरूप त्रिभुजों के क्षेत्रफल 36 cm2 और 100 cm2 हैं। यदि बड़े त्रिभुज की एक भुजा की लंबाई 20 cm है, तो उस भुजा के संगत छोटे त्रिभुज की भुजा की लंबाई ज्ञात कीजिए। 


आकृति में, यदि ∠A = ∠C, AB = 6 cm, BP = 15 cm, AP = 12 cm और CP = 4 cm है, तो PD और CD की लंबाइयाँ ज्ञात कीजिए।

 


आकृति में, ABC एक त्रिभुज है जिसका ∠B समकोण है तथा BD ⊥ AC है। यदि AD = 4 cm, और CD = 5 cm है, तो BD और AB ज्ञात कीजिए। 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×