Advertisements
Advertisements
प्रश्न
निम्नलिखित सारणी में खाली स्थान भरिए:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.5 | 0.35 | .... | 0.7 |
उत्तर
यहाँ, P(A) = 0.5, P(B) = 0.35, P(A ∪ B) = 0.7
हम जानते हैं कि P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
∴0.7 = 0.5 + 0.35 – P(A ∩ B)
⇒ P(A ∩ B) = 0.5 + 0.35 – 0.7
⇒ P(A ∩ B) = 0.15
APPEARS IN
संबंधित प्रश्न
एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:
- एक अभाज्य संख्या प्रकट होना
- 3 या 3 से बड़ी संख्या प्रकट होना
- 1 या 1 से छोटी संख्या प्रकट होना
- छः से बड़ी संख्या प्रकट होना
- छः से छोटी संख्या प्रकट होना
ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
- प्रतिदर्श समष्टि में कितने बिंदु हैं?
- पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है?
- प्रायिकता ज्ञात कीजिए कि पत्ता
- इक्का है
- काले रंग का है।
एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग (i) 3 है। (ii) 12 है।
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी संभावना है ?
तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
- तीन चित्त प्रकट होना
- 2 चित्त प्रकट होना
- न्यूनतम 2 चित्त प्रकट होना
- अधिकतम 2 चित्त प्रकट होना
- एक भी चित्त प्रकट न होना
- 3 पट् प्रकट होना
- तथ्यतः 2 पट् प्रकट होना
- कोई भी पट प्रकट न होना
- अधिकतम 2 पट् प्रकट होना
यदि किसी घटना A की प्रायिकता `2/11` है तो घटना ‘A-नहीं’ की प्रायिकता ज्ञात कीजिए।
शब्द ‘ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
- एक स्वर (vowel) है
- एक व्यंजन (consonant) है।
एक लाटरी में एक व्यक्ति 1 से 20 तक की संख्याओं में से छः भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गई छः संख्याएँ उन छः संख्याओं से मेल खाती हैं, जिन्हें लाटरी समिति ने पूर्वनिर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है? [संकेत: संख्याओं के प्राप्त होने का क्रम महत्वपूर्ण नहीं है]
जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:
P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6
जाँच कीजिए कि निम्न प्रायिकताएँ P(A) और P(B) युक्ति संगत (consistently) परिभाषित की गई हैं:
P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
निम्नलिखित सारणी में खाली स्थान भरिए:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.35 | ... | 0.25 | 0.6 |
घटनाएँ A और B इस प्रकार हैं कि P(A) = 0.42, P(B) = 0.48 और P(A और B) = 0.16, ज्ञात कीजिए:
P(A-नहीं)
एक पाठशाला की कक्षा XI के 40% विद्यार्थी गणित पढ़ते हैं और 30% जीव विज्ञान पढ़ते हैं। कक्षा के 10% विद्यार्थी गणित और जीव विज्ञान दोनों पढ़ते हैं । यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है, तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
एक प्रवेश परीक्षा की दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायिकता 0.8 है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता 0.7 है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता 0.95 है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है?
एक कक्षा के 60 विद्यार्थियों में से 30 ने एन. सी. सी. (NCC), 32 ने एन. एस. एस. (NSS) और 24 ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
- विद्यार्थी ने एन.सी.सी. या एन.एस.एस. को चुना है।
- विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
- विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी को नहीं चुना है।
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप एक टिकट खरीदते हैं?
तीन व्यक्तियों के लिए तीन पत्र लिखवाए गए हैं और प्रत्येक के लिए पता लिखा एक लिफाफा है। पत्रों को लिफाफों में यादृच्छया इस प्रकार डाला गया कि प्रत्येक लिफाफे में एक ही पत्र है। प्रायिकता ज्ञात कीजिए कि कम से कम एक पत्र अपने सही लिफाफे में डाला गया है।
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप दो टिकट खरीदते हैं?
एक लाटरी में 10000 टिकट बेचे गए जिनमें दस समान इनाम दिए जाने हैं। कोई भी ईनाम न मिलने की प्रायिकता क्या है यदि आप 10 टिकट खरीदते हैं?