मराठी

निम्नलिखित समीकरणों में से किस समीकरण का एक विशिष्ट हल y = x है? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित समीकरणों में से किस समीकरण का एक विशिष्ट हल y = x है?

पर्याय

  • `("d"^2 "y")/"dx"^2 - "x"^2  "dy"/"dx" + "xy" = "x"`

  • `("d"^2 "y")/"dx"^2 + "x"^2  "dy"/"dx" + "xy" = "x"`

  • `("d"^2 "y")/"dx"^2 - "x"^2  "dy"/"dx" + "xy" = 0`

  • `("d"^2 "y")/"dx"^2 + "x"^2  "dy"/"dx" + "xy" = 0`

MCQ

उत्तर

`("d"^2 "y")/"dx"^2 - "x"^2  "dy"/"dx" + "xy" = 0`

स्पष्टीकरण:

y = x

x के सापेक्ष अवकलन करने पर

y’ = 1

तथा y” = 0
y = x का

मान `("d"^2 "y")/"dx"^2 - "x"^2  "dy"/"dx" + "xy" = 0` में रखने पर,

- x2 · 1 + x · x = 0 जो सत्य है।

shaalaa.com
दिए हुए व्यापक हल वाले अवकल समीकरण का निर्माण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली 9.3 [पृष्ठ ४०८]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली 9.3 | Q 12. | पृष्ठ ४०८

संबंधित प्रश्‍न

नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

`"x"/"a" + "y"/"b" = 1`


नीचे दिए गए प्रश्न में, स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y2 = a (b2 - x2)


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = ae3x + be-2x


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = e2x (a + bx)


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = ex (a cos x + b sin x)


y - अक्ष को मूल बिंदु पर स्पर्श करने वाले वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


ऐसे परवलयों के कुल का अवकल समीकरण निर्मित कीजिए जिनका शीर्ष मूल बिंदु पर है और जिनका अक्ष धनात्मक y - अक्ष की दिशा में है।


ऐसे दीर्घवृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए जिनकी नाभियाँ y - अक्ष पर हैं तथा जिनका केंद्र मूल बिंदु है।


ऐसे अतिपरवलयों के कुल का अवकल समीकरण ज्ञात कीजिए जिनकी नाभियाँ x-अक्ष पर हैं तथा जिनका केंद्र मूल बिंदु है।


निम्नलिखित अवकल समीकरणों में से किस समीकरण का व्यापक हल y = c1 ex + c2 e-x  है?


(x – a)2 + 2y2 = a2 द्वारा निरूपित वक्रों के कुल का अवकल समी० निर्मित कीजिए जहाँ a एक स्वेच्छ अचर है।


सिद्ध कीजिए कि x2 – y2 = c (x2 + y2)2 जहाँ c एक प्राचल है, अवकल समीकरण (x3 – 3x y2)dx = (y3 – 3x2y) dy का व्यापक हल है।


प्रथम चतुर्थांश में ऐसे वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए जो निर्देशांक अक्षों को स्पर्श करते हैं।


अवकल समीकरण `dy/dx + sqrt((1 - y^2)/(1 - x^2))`= 0, जबकि x ≠ 1 का व्यापक हल ज्ञात कीजिए।


दर्शाइए कि अवकल समीकरण `dy/dx + (y^2 + y + 1)/(x^2 + x + 1)` = 0 का व्यापक हल (x + y + 1) = A(1 – x – y – 2xy) है, जिसमें A एक प्राचल है|


बिंदु `(0, π/4)` से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण sin x cos y dx + cos x sin y dy = 0 है।


`dx/dy + P_1 x = Q_1` के रूप वाले अवकल समीकरण का व्यापक हल है:


अवकल समीकरण exdy + (yex + 2x) dx = 0 का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×