मराठी

Pqrs is a Cyclic Quadrilateral Such that Pr is a Diameter of the Circle. If ∠Qpr = 67° and ∠Spr = 72°, Then ∠Qrs = - Mathematics

Advertisements
Advertisements

प्रश्न

PQRS is a cyclic quadrilateral such that PR is a diameter of the circle. If ∠QPR = 67° and ∠SPR = 72°, then ∠QRS =

पर्याय

  • 41°

  •  23°

  • 67°

  • 18°

MCQ

उत्तर

Here we have a cyclic quadrilateral PQRS with PR being a diameter of the circle. Let the centre of this circle be ‘O’.

We are given that  `angleQPR`  and `angleSPR = 72°` . This is shown in fig (2).

So we see that,

\[\angle QPS = \angle QPR + \angle RPS\]
\[ = 67°+ 72° \]
\[ = 139°\] 

In a cyclic quadrilateral it is known that the opposite angles are supplementary.

`angleQPS + angleQRS = 180°`

                 `angleQRS = 180° - angleQPS`

                             `= 180° - 139°`

                               = 41°

 

 

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 15.7 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 15 Circles
Exercise 15.7 | Q 16 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.


ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.


If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.


Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.


Two chords AB and CD of lengths 5 cm 11cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.


In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______


In the given figure, ∠BAD = 78°, ∠DCF = x° and ∠DEF = y°. Find the values of x and y


In a cyclic quadrilateral ABCD, if ∠A − ∠C = 60°, prove that the smaller of two is 60°

 

 

ABCD is a cyclic trapezium with AD || BC. If ∠B = 70°, determine other three angles of the trapezium.


In the figure, ▢ABCD is a cyclic quadrilateral. If m(arc ABC) = 230°, then find ∠ABC, ∠CDA, ∠CBE.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×