Advertisements
Advertisements
प्रश्न
Prove that the line segment joining the mid-point of the hypotenuse of a right triangle to its opposite vertex is half the hypotenuse.
उत्तर
We have to prove that ` BP = 1/2 AC`
Let Δ ABC be a right angle at B and P be midpoint of AC
Draw a circle with center at P and AC diameter
Since ` angle ABC = ` 90° therefore circle passing through B
So `BP = CP = `radius
`⇒ AP = BP = CP `
Hence
`BP = 1/2 AC` Proved.
APPEARS IN
संबंधित प्रश्न
In the given figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠BEC = 130° and ∠ECD = 20°. Find ∠BAC.
Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.
In the below fig. O is the centre of the circle. Find ∠BAC.
If O is the centre of the circle, find the value of x in the following figure
In the given figure, if ∠ACB = 40°, ∠DPB = 120°, find ∠CBD.
In the given figure, O is the centre of the circle, prove that ∠x = ∠y + ∠z.
In the given figure, AB is a diameter of the circle such that ∠A = 35° and ∠Q = 25°, find ∠PBR.
In the given figure, P and Q are centres of two circles intersecting at B and C. ACD is a straight line. Then, ∠BQD =
In the given figure, if O is the circumcentre of ∠ABC, then find the value of ∠OBC + ∠BAC.
A circle has radius `sqrt(2)` cm. It is divided into two segments by a chord of length 2 cm. Prove that the angle subtended by the chord at a point in major segment is 45°.