मराठी

Prove that the External Bisector of an Angle of a Triangle Divides the Opposite Side Externally N the Ratio of the Sides Containing the Angle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the external bisector of an angle of a triangle divides the opposite side externally n the ratio of the sides containing the angle.

बेरीज

उत्तर


In ΔABC, CE || AD

∴ `"BD"/"CD" = "AB"/"AE"`.....(i)

(By Basic Proportionality theorem)
AD is e bisector of ∠CAF
∠FAD = ∠CAD......(ii)
Since CE || AD
Therefore,
∠ACE = ∠CAD......(iii)  ...(alternate angles)
∠AEC = ∠FAD......(iv)   ...(corresponding angles)
From (ii) and (iii) and (iv)
∠AEC = ∠ACE
In ΔAEC,
∠AEC = ∠ACE
AC = AE  ......(v) ...(Equal angles have equal sides opposite to them)
From (i) and (v)

`"BD"/"CD" = "AB"/"AC"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Similarity - Exercise 16.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 16 Similarity
Exercise 16.1 | Q 16
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×