मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Blocks Shown in Figure Have Equal Masses. the Surface of a is Smooth but that of B Has a Friction Coefficient of 0.10 with the Floor. Block a is Moving at a Speed of 10 M/S Towards - Physics

Advertisements
Advertisements

प्रश्न

The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. 

संख्यात्मक

उत्तर

Given,
Speed of the block A = 10 m/s 
The block B is kept at rest.
Coefficient of friction between the floor and block B, μ = 0.10

Let v1 and v2 be the velocities of A and B after collision, respectively.

(a) If the collision is perfectly elastic, linear momentum is conserved.

Using the law of conservation of linear momentum, we can write:

\[m u_1  + m u_2    =   m v_1  + m v_2 \] 

\[ \Rightarrow 10 + 0 =  v_1  +  v_2 \] 

\[           v_1  +  v_2  = 10         .  .  . \left( 1 \right)\] 

\[\text{ We  know,} \] 

\[\text{ Velocity  of  separation }  \left( \text{ after  collision }\right)   = \text{ Velocity  of  approach }  \left( \text{ before  collision } \right )\]

\[ v_1  -  v_2    =    - ( u_1  -  v_2 )\] 

\[ \Rightarrow  v_1  -  v_2  =  - 10         .  .  . \left( 2 \right)\] 

\[\text{ Substracting  equation  (2)  from  (1),   we  get: }\] 

\[2 v_2    =   20\] 

\[ \Rightarrow    v_2  = 10  \text{ m/s }\]
The deceleration of block B is calculated as follows:

Applying the work-energy principle, we get:

\[\left( \frac{1}{2} \right) \times m \times (0 )^2  - \left( \frac{1}{2} \right) \times m \times  v^2    =    - m \times a \times  s_1 \] 

\[ \Rightarrow    - \left( \frac{1}{2} \right) \times (10 )^2    =    - \mu g \times  s_1 \] 

\[ \Rightarrow  s_1    =   \frac{100}{2 \times 0.1 \times 10}   =   50 \text{ m }\]

(b) If the collision is perfectly inelastic, we can write:

\[m \times  u_1  + m \times  u_2    =   (m + m) \times v\] 

\[ \Rightarrow   m \times 10 + m \times 0   =   2m \times v\] 

\[ \Rightarrow   v   =   \left( \frac{10}{2} \right)   =   5 \text{ m/s }\]
The two blocks move together, sticking to each other.
∴ Applying the work-energy principle again, we get:

\[\left( \frac{1}{2} \right) \times 2m \times (0 )^2    -   \left( \frac{1}{2} \right) \times 2m \times (v )^2    =   2m \times \mu g \times  s_2 \] 

\[ \Rightarrow \frac{(5 )^2}{0 . 1 \times 10 \times 2}   =    s_2 \] 

\[ \Rightarrow    s_2    =   12 . 5\]m

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Centre of Mass, Linear Momentum, Collision - Exercise [पृष्ठ १६३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 58 | पृष्ठ १६३

संबंधित प्रश्‍न

If the total mechanical energy of a particle is zero, is its linear momentum necessarily zero? Is it necessarily nonzero?


If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?


Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


A van is standing on a frictionless portion of a horizontal road. To start the engine, the vehicle must be set in motion in the forward direction. How can be persons sitting inside the van do it without coming out and pushing from behind?


In one-dimensional elastic collision of equal masses, the velocities are interchanged. Can velocities in a one-dimensional collision be interchanged if the masses are not equal?


A shell is fired from a cannon with a velocity V at an angle θ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces retraces its path to the cannon. The speed of the other piece immediately after the explosion is


A block moving in air breaks in two parts and the parts separate
(a) the total momentum must be conserved
(b) the total kinetic energy must be conserved
(c) the total momentum must change
(d) the total kinetic energy must change


A man of mass 50 kg starts moving on the earth and acquires a speed 1.8 m/s. With what speed does the earth recoil? Mass of earth = 6 × 1024 kg.


A ball of mass 50 g moving at a speed of 2.0 m/s strikes a plane surface at an angle of incidence 45°. The ball is reflected by the plane at equal angle of reflection with the same speed. Calculate (a) the magnitude of the change in momentum of the ball (b) the change in the magnitude of the momentum of the ball.


Light in certain cases may be considered as a stream of particles called photons. Each photon has a linear momentum h/λ where h is the Planck's constant and λ is the wavelength of the light. A beam of light of wavelength λ is incident on a plane mirror at an angle of incidence θ. Calculate the change in the linear momentum of a photon as the beam is reflected by the mirror.


A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is  50 m where m is the mass of one shell. If the velocity of the shell with respect to the gun (in its state before firing) is 200 m/s, what is the recoil speed of the car after the second shot? Neglect friction.


In a typical Indian Bugghi (a luxury cart drawn by horses), a wooden plate is fixed on the rear on which one person can sit. A bugghi of mass 200 kg is moving at a speed of 10 km/h. As it overtakes a school boy walking at a speed of 4 km/h, the boy sits on the wooden plate. If the mass of the boy is 25 kg, what will be the plate. If the mass of the boy is 25 kg, what will be the new velocity of the bugghi ?  


A 60 kg man skating with a speed of 10 m/s collides with a 40 kg skater at rest and they cling to each other. Find the loss of kinetic energy during the collision.


Consider a head-on collision between two particles of masses m1 and m2. The initial speeds of the particles are u1 and u2 in the same direction. the collision starts at t = 0 and the particles interact for a time interval ∆t. During the collision, the speed of the first particle varies as \[v(t) = u_1 + \frac{t}{∆ t}( v_1 - u_1 )\]
Find the speed of the second particle as a function of time during the collision. 


The friction coefficient between the horizontal surface and each of the block shown in figure is 0.20. The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take g = 10 m/s2.


A small block of superdense material has a mass of 3 × 1024kg. It is situated at a height h (much smaller than the earth's radius) from where it falls on the earth's surface. Find its speed when its height from the earth's surface has reduce to to h/2. The mass of the earth is 6 × 1024kg.


A small disc is set rolling with a speed \[\nu\] on the horizontal part of the track of the previous problem from right to left. To what height will it climb up the curved part?


The following figure shows a rough track, a portion of which is in the form of a cylinder of radius R. With what minimum linear speed should a sphere of radius r be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.


The following figure shows a small spherical ball of mass m rolling down the loop track. The ball is released on the linear portion at a vertical height H from the lowest point. The circular part shown has a radius R.
(a) Find the kinetic energy of the ball when it is at a point A where the radius makes an angle θ with the horizontal.
(b) Find the radial and the tangential accelerations of the centre when the ball is at A.
(c) Find the normal force and the frictional force acting on the if ball if H = 60 cm, R = 10 cm, θ = 0 and m = 70 g.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×