Advertisements
Advertisements
प्रश्न
The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.
पर्याय
ABCD is a rhombus
diagonals of ABCD are equal
diagonals of ABCD are equal and perpendicular
diagonals of ABCD are perpendicular
उत्तर
The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, diagonals of ABCD are equal and perpendicular.
Explanation:
Given, ABCD is a quadrilateral and P, Q, R and S are the mid-points of sides of AB, BC, CD and DA, respectively.
Then, PQRS is a square.
∴ PQ = QR = RS = PS ...(i)
And PR = SQ
But PR = BC and SQ = AB
∴ AB = BC
Thus, all the sides of quadrilateral ABCD are equal.
Hence, quadrilateral ABCD is either a square or a rhombus.
Now, in ΔADB, use mid-point theorem
SP || DB
And SP = `1/2` DB ...(ii)
Similarly in ΔABC ...(By mid-point theorem)
PQ || AC and PQ = `1/2` AC ...(iii)
From equation (i),
PS = PQ
⇒ `1/2` DB = `1/2` AC ...[From equations (ii) and (iii)]
⇒ DB = AC
Thus, diagonals of ABCD are equal and therefore quadrilateral ABCD is a square not rhombus. So, diagonals of quadrilateral are also perpendicular.
APPEARS IN
संबंधित प्रश्न
In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.
In below fig. ABCD is a parallelogram and E is the mid-point of side B If DE and AB when produced meet at F, prove that AF = 2AB.
In the given figure, seg PD is a median of ΔPQR. Point T is the mid point of seg PD. Produced QT intersects PR at M. Show that `"PM"/"PR" = 1/3`.
[Hint: DN || QM]
L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.
If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.
In ΔABC, D is the mid-point of AB and E is the mid-point of BC.
Calculate:
(i) DE, if AC = 8.6 cm
(ii) ∠DEB, if ∠ACB = 72°
In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.
In parallelogram ABCD, P is the mid-point of DC. Q is a point on AC such that CQ = `(1)/(4)"AC"`. PQ produced meets BC at R. Prove that
(i) R is the mid-point of BC, and
(ii) PR = `(1)/(2)"DB"`.
ABCD is a parallelogram.E is the mid-point of CD and P is a point on AC such that PC = `(1)/(4)"AC"`. EP produced meets BC at F. Prove that: 2EF = BD.
In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: EGFH is a parallelogram.