मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The figure shows an adiabatic cylindrical tube of volume V0 divided in two parts by a frictionless adiabatic separator - Physics

Advertisements
Advertisements

प्रश्न

The figure shows an adiabatic cylindrical tube of volume V0 divided in two parts by a frictionless adiabatic separator. Initially, the separator is kept in the middle, an ideal gas at pressure p1 and temperature T1 is injected into the left part and another ideal gas at pressure p2 and temperature T2 is injected into the right part. Cp/Cv = γ is the same for both the gases. The separator is slid slowly and is released at a position where it can stay in equilibrium. Find (a) the volumes of the two parts (b) the heat given to the gas in the left part and (c) the final common pressure of the gases.

थोडक्यात उत्तर

उत्तर

For an adiabatic process, PVγ = Constant
So,  P1V1γ = P2V2γ   ...(i)
According to the problem,
V1 + V2 = V0  ...(ii)
Using the relation in eq (ii) in eq (i), we get
P1V1γ = P2(V0 − V1)γ

Or `("P"_1/"P"_2)^(1/gamma) = ("V"_0 -"V"_1)/"V"_1`

`"V"_1"P"_1^(1/gamma)  = "V"_0"P"_2^(1/gamma) - "V"_1"P"_2^(1/gamma)`

`"V"_1( "P"_1^(1/gamma) + "P"_2^(1/gamma)) = "V"_0"P"_2^(1/gamma)`

`"V"_1 = ("P"_2^(1-gamma) "V"_0)/("P"_1^(1/gamma) +"P"_2^(1/gamma))`

Using equation (ii), we get

`"V"_2 = ("P"_1^(1/gamma) "V"_0)/("P"_1 ^(1/gamma)+ "P"_2^(1/gamma))`

(b) Since the whole process takes place in adiabatic surroundings, the separator is adiabatic.
Hence, heat given to the gas in the left part is 0.
(c) There will be a common pressure 'P' when equilibrium is reached. The slid will move until the pressure on the two sides becomes equal.
P1V1γ + P2V2γ = PV0γ

For equilibrium, `"V"_1 = "V"_2 = "V"_0/2`

Hence,

`"P"_1("V"_0/2)^gamma + "P"_2("V"_0/2) ^gamma = "P"("V"_0)^gamma`

Or `"P" = (("P" _1^(1/gamma) + "P"_2^(1/gamma))/2)^gamma`

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 5 Specific Heat Capacities of Gases
Exercises | Q 30 | पृष्ठ ७९

संबंधित प्रश्‍न

Keeping the number of moles, volume and temperature the same, which of the following are the same for all ideal gases?


Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an adiabatic process.
(a) Q = 0
(b) W = 0
(c) Q = W
(d) Q ≠ W


The figure shows a cylindrical container containing oxygen (γ = 1.4) and closed by a 50-kg frictionless piston. The area of cross-section is 100 cm2, atmospheric pressure is 100 kPa and g is 10 m s−2. The cylinder is slowly heated for some time. Find the amount of heat supplied to the gas if the piston moves out through a distance of 20 cm.


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


An amount Q of heat is added to a monatomic ideal gas in a process in which the gas performs a work Q/2 on its surrounding. Find the molar heat capacity for the process


Two ideal gases have the same value of Cp / Cv = γ. What will be the value of this ratio for a mixture of the two gases in the ratio 1 : 2?


An ideal gas (γ = 1.67) is taken through the process abc shown in the figure. The temperature at point a is 300 K. Calculate (a) the temperatures at b and c (b) the work done in the process (c) the amount of heat supplied in the path ab and in the path bcand (d) the change in the internal energy of the gas in the process.


The volume of an ideal gas (γ = 1.5) is changed adiabatically from 4.00 litres to 3.00 litres. Find the ratio of (a) the final pressure to the initial pressure and (b) the final temperature to the initial temperature.


An ideal gas at pressure 2.5 × 105 Pa and temperature 300 K occupies 100 cc. It is adiabatically compressed to half its original volume. Calculate (a) the final pressure (b) the final temperature and (c) the work done by the gas in the process. Take γ = 1.5


Consider a given sample of an ideal gas (Cp/Cv = γ) having initial pressure p0 and volume V0. (a) The gas is  isothermally taken to a pressure p0/2 and from there, adiabatically to a pressure p0/4. Find the final volume. (b) The gas is brought back to its initial state. It is adiabatically taken to a pressure p0/2 and from there, isothermally to a pressure p0/4. Find the final volume.


Two samples A and B, of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the gas in B is expanded adiabatically to double its volume. If the work done by the gas is the same for the two cases, show that γ satisfies the equation 1 − 21−γ = (γ − 1) ln2.


Figure shows a cylindrical tube with adiabatic walls and fitted with an adiabatic separator. The separator can be slid into the tube by an external mechanism. An ideal gas (γ = 1.5) is injected in the two sides at equal pressures and temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio 1 : 3. Find the ratio of the temperatures in the two parts of the vessel.


Two vessels A and B of equal volume V0 are connected by a narrow tube that can be closed by a valve. The vessels are fitted with pistons that can be moved to change the volumes. Initially, the valve is open and the vessels contain an ideal gas (Cp/Cv = γ) at atmospheric pressure p0 and atmospheric temperature T0. The walls of vessel A are diathermic and those of B are adiabatic. The valve is now closed and the pistons are slowly pulled out to increase the volumes of the vessels to double the original value. (a) Find the temperatures and pressures in the two vessels. (b) The valve is now opened for sufficient time so that the gases acquire a common temperature and pressure. Find the new values of the temperature and pressure.


A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500 ms–1 in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground ______.


1 mole of an ideal gas is contained in a cubical volume V, ABCDEFGH at 300 K (Figure). One face of the cube (EFGH) is made up of a material which totally absorbs any gas molecule incident on it. At any given time ______.


Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory `pV = 2/3` E, E is ______.

  1. the total energy per unit volume.
  2. only the translational part of energy because rotational energy is very small compared to the translational energy.
  3. only the translational part of the energy because during collisions with the wall pressure relates to change in linear momentum.
  4. the translational part of the energy because rotational energies of molecules can be of either sign and its average over all the molecules is zero.

When an ideal gas is compressed adiabatically, its temperature rises: the molecules on the average have more kinetic energy than before. The kinetic energy increases ______.

  1. because of collisions with moving parts of the wall only.
  2. because of collisions with the entire wall.
  3. because the molecules gets accelerated in their motion inside the volume.
  4. because of redistribution of energy amongst the molecules.

We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state?

(Hydrogen molecules can be consider as spheres of radius 1 Å).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×