मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Figure Shows a Cylindrical Container Containing Oxygen (γ = 1.4) and Closed by a 50-kg Frictionless Piston. - Physics

Advertisements
Advertisements

प्रश्न

The figure shows a cylindrical container containing oxygen (γ = 1.4) and closed by a 50-kg frictionless piston. The area of cross-section is 100 cm2, atmospheric pressure is 100 kPa and g is 10 m s−2. The cylinder is slowly heated for some time. Find the amount of heat supplied to the gas if the piston moves out through a distance of 20 cm.

थोडक्यात उत्तर

उत्तर

Given:
Mass of the piston (m) = 50 kg
Adiabatic constant of the gas, γ = 1.4
Area of cross-section of the piston (A) = 100 cm2
Atmospheric pressure (P0) = 100 kPa
g = 10 m/s2 
Distance moved by the piston , x = 20 cm
Work done by the gas,

dW=Pdv

The pressure (p) is because of two factors : the first is the initial pressure and 

Therefore,

`"W" = (("m""g")/"A" + "P"_0) xx "A""d"x`

`"W" = ((50 xx 10)/(100 xx 10^-4) + 10_5) xx 100 xx 10^-4 xx 20 xx 10^-4` 

W =( 5 × 104 +105) × 20 × 10-4

W = 1.5 × 105 × 20 × 10-4 

W = 300 J

Hence , nRdT = PΔV = 300

`=> "d""T" =300/("n""R")`

So, `"d""Q" = "n""C"_"p""d""T" = "n""c"_"p" xx (300/("n""R"))`

Using `"C"_"p" -"C"_"v" = "R" and "C"_"p"/"C"_"v" = gamma,`

`"d""Q" = ("n" gamma"R"300)/((gamma - 1) "n""R")`

`"d""Q" = ((300 xx 1.4 )/0.4) = 1050 "J"`

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ७७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 5 Specific Heat Capacities of Gases
Exercises | Q 3 | पृष्ठ ७७

संबंधित प्रश्‍न

Find the number of molecules in 1 cm3 of an ideal gas at 0°C and at a pressure of 10−5mm of mercury.

Use R = 8.31 J K-1 mol-1


Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an isothermal process.


A rigid container of negligible heat capacity contains one mole of an ideal gas. The temperature of the gas increases by 1° C if 3.0 cal of heat is added to it. The gas may be
(a) helium
(b) argon
(c) oxygen
(d) carbon dioxide


A vessel containing one mole of a monatomic ideal gas (molecular weight = 20 g mol−1) is moving on a floor at a speed of 50 m s−1. The vessel is stopped suddenly. Assuming that the mechanical energy lost has gone into the internal energy of the gas, find the rise in its temperature.


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


The volume of an ideal gas (γ = 1.5) is changed adiabatically from 4.00 litres to 3.00 litres. Find the ratio of (a) the final pressure to the initial pressure and (b) the final temperature to the initial temperature.


An ideal gas at pressure 2.5 × 105 Pa and temperature 300 K occupies 100 cc. It is adiabatically compressed to half its original volume. Calculate (a) the final pressure (b) the final temperature and (c) the work done by the gas in the process. Take γ = 1.5


Two samples A and B, of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the gas in B is expanded adiabatically to double its volume. If the work done by the gas is the same for the two cases, show that γ satisfies the equation 1 − 21−γ = (γ − 1) ln2.


1 litre of an ideal gas (γ = 1.5) at 300 K is suddenly compressed to half its original volume. (a) Find the ratio of the final pressure to the initial pressure. (b) If the original pressure is 100 kPa, find the work done by the gas in the process. (c) What is the change in internal energy? (d) What is the final temperature? (e) The gas is now cooled to 300 K keeping its pressure constant. Calculate the work done during the process. (f) The gas is now expanded isothermally to achieve its original volume of 1 litre. Calculate the work done by the gas. (g) Calculate the total work done in the cycle.


Figure shows a cylindrical tube with adiabatic walls and fitted with an adiabatic separator. The separator can be slid into the tube by an external mechanism. An ideal gas (γ = 1.5) is injected in the two sides at equal pressures and temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio 1 : 3. Find the ratio of the temperatures in the two parts of the vessel.


The figure shows an adiabatic cylindrical tube of volume V0 divided in two parts by a frictionless adiabatic separator. Initially, the separator is kept in the middle, an ideal gas at pressure p1 and temperature T1 is injected into the left part and another ideal gas at pressure p2 and temperature T2 is injected into the right part. Cp/Cv = γ is the same for both the gases. The separator is slid slowly and is released at a position where it can stay in equilibrium. Find (a) the volumes of the two parts (b) the heat given to the gas in the left part and (c) the final common pressure of the gases.


A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500 ms–1 in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground ______.


1 mole of an ideal gas is contained in a cubical volume V, ABCDEFGH at 300 K (Figure). One face of the cube (EFGH) is made up of a material which totally absorbs any gas molecule incident on it. At any given time ______.


ABCDEFGH is a hollow cube made of an insulator (Figure). Face ABCD has positive charge on it. Inside the cube, we have ionized hydrogen. The usual kinetic theory expression for pressure ______.

  1. will be valid.
  2. will not be valid since the ions would experience forces other than due to collisions with the walls.
  3. will not be valid since collisions with walls would not be elastic.
  4. will not be valid because isotropy is lost.

Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory `pV = 2/3` E, E is ______.

  1. the total energy per unit volume.
  2. only the translational part of energy because rotational energy is very small compared to the translational energy.
  3. only the translational part of the energy because during collisions with the wall pressure relates to change in linear momentum.
  4. the translational part of the energy because rotational energies of molecules can be of either sign and its average over all the molecules is zero.

When an ideal gas is compressed adiabatically, its temperature rises: the molecules on the average have more kinetic energy than before. The kinetic energy increases ______.

  1. because of collisions with moving parts of the wall only.
  2. because of collisions with the entire wall.
  3. because the molecules gets accelerated in their motion inside the volume.
  4. because of redistribution of energy amongst the molecules.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×